This paper investigates the effects of tool holder materials on chatter vibration in turning operations.The study uses a complex dynamic turning model with two degrees of freedom for the orthogonal cutting system.Tool...This paper investigates the effects of tool holder materials on chatter vibration in turning operations.The study uses a complex dynamic turning model with two degrees of freedom for the orthogonal cutting system.Tool holders made from different materials,including Al 5083,Al 6082,Al 7012,and a standard 4140 material,were subjected to chatter vibration to investigate their process damping capabilities.The study found that the standard tool holder 4140 allows for higher stable depths of cut and produces similar process damping values compared to the other tool holders.Finite element analyses(FEA)were performed to verify the experimental results,and the modal and FEA analyses produced very similar results.The study concludes that future research should investigate the effects of tool holders made from high alloy steel alloys on process damping.Overall,this paper provides important insights into the effects of tool hold-er materials on chatter vibration and process damping in turning operations,which can help in the design of more effi-cient and effective cutting systems.展开更多
A large aspect ratio vibration reducing tool holder based on passive damping vibration reduction technology is designed to solve the vibration problem that occurs in deep hole machining of vertical lathes.A dynamic mo...A large aspect ratio vibration reducing tool holder based on passive damping vibration reduction technology is designed to solve the vibration problem that occurs in deep hole machining of vertical lathes.A dynamic model of passive damping vibration reduction tool holder was established,and the optimal damping ratio,optimal frequency ratio,and maximum relative amplitude were derived.Modal analysis of the passive damping vibrationreduction tool holder was conducted using software.The results showed that the maximum response amplitude of the passive damping vibration reduction tool holder decreased significantly compared to the original one.展开更多
Blisks with the integral structure are key parts used in new jet engines to promote the performance of aircrafts,which also increases the complexity of tool orientation planning in the five-axis machining.It is an ess...Blisks with the integral structure are key parts used in new jet engines to promote the performance of aircrafts,which also increases the complexity of tool orientation planning in the five-axis machining.It is an essential task to find the collision-free tool orientation when the tool holder is pushed deep into the channel of blisk to increase rigidity and reduce vibration.Since the radius of the holder varies with the height,the line-visibility is no longer applicable when constructing collision-free regions of tool orientation.In this paper,a method of constructing collisionfree regions without interference checking is proposed.The work of finding collision-free regions resorts to solving the local contact curves on the checking surfaces of blisk.And it further transforms into searching the locally tangent points(named critical points)between the holder and surface.Then a tracking-based algorithm is proposed to search the sample critical points on these local contact curves.And the corresponding critical vectors are also calculated synchronously.Besides,the safety allowance,discrete precision and acceptable deviation are introduced in the algorithm to ensure accuracy by controlling the angle between two adjacent critical vectors properly.After that,the searched critical vectors are mapped orderly to two-dimensional space and the collisionfree regions are constructed.This method is finally verified and compared with a referenced method.The results show that the proposed method can efficiently construct collision-free regions for holder under the given accuracy.展开更多
基金This study was supported by the Scientific Research Coordination Unit of Pamukkale University under the project number 2011BSP020.
文摘This paper investigates the effects of tool holder materials on chatter vibration in turning operations.The study uses a complex dynamic turning model with two degrees of freedom for the orthogonal cutting system.Tool holders made from different materials,including Al 5083,Al 6082,Al 7012,and a standard 4140 material,were subjected to chatter vibration to investigate their process damping capabilities.The study found that the standard tool holder 4140 allows for higher stable depths of cut and produces similar process damping values compared to the other tool holders.Finite element analyses(FEA)were performed to verify the experimental results,and the modal and FEA analyses produced very similar results.The study concludes that future research should investigate the effects of tool holders made from high alloy steel alloys on process damping.Overall,this paper provides important insights into the effects of tool hold-er materials on chatter vibration and process damping in turning operations,which can help in the design of more effi-cient and effective cutting systems.
基金Science and Technology Research Project of Liaoning Provincial Department of Education:Research on the Application of Damping and Vibration Reduction Technology in Key Components of Machine Tools(JYTMS20230066)The Fund of Liaoning Provincial Natural Science and Technology Foundation Regional Joint(No.2021-YKLH-08).
文摘A large aspect ratio vibration reducing tool holder based on passive damping vibration reduction technology is designed to solve the vibration problem that occurs in deep hole machining of vertical lathes.A dynamic model of passive damping vibration reduction tool holder was established,and the optimal damping ratio,optimal frequency ratio,and maximum relative amplitude were derived.Modal analysis of the passive damping vibrationreduction tool holder was conducted using software.The results showed that the maximum response amplitude of the passive damping vibration reduction tool holder decreased significantly compared to the original one.
基金the National Natural Science Foundation of China(No.51675439)。
文摘Blisks with the integral structure are key parts used in new jet engines to promote the performance of aircrafts,which also increases the complexity of tool orientation planning in the five-axis machining.It is an essential task to find the collision-free tool orientation when the tool holder is pushed deep into the channel of blisk to increase rigidity and reduce vibration.Since the radius of the holder varies with the height,the line-visibility is no longer applicable when constructing collision-free regions of tool orientation.In this paper,a method of constructing collisionfree regions without interference checking is proposed.The work of finding collision-free regions resorts to solving the local contact curves on the checking surfaces of blisk.And it further transforms into searching the locally tangent points(named critical points)between the holder and surface.Then a tracking-based algorithm is proposed to search the sample critical points on these local contact curves.And the corresponding critical vectors are also calculated synchronously.Besides,the safety allowance,discrete precision and acceptable deviation are introduced in the algorithm to ensure accuracy by controlling the angle between two adjacent critical vectors properly.After that,the searched critical vectors are mapped orderly to two-dimensional space and the collisionfree regions are constructed.This method is finally verified and compared with a referenced method.The results show that the proposed method can efficiently construct collision-free regions for holder under the given accuracy.