Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully...Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully synthesized via the sol–gel method and tested for their catalytic performance for simultaneous degradation of benzene and toluene.The CuMn_(2)O_(4)sample exhibited the best catalytic performance,the conversion of benzene reached 100%at 350℃,and toluene conversion reached 100%at 250℃.XRD,N_(2)adsorption-desorption,HRTEM-EDS,ED-XRF,Raman spectroscopy,H_(2)-TPR,NH_(3)-TPD,O_(2)-TPD and XPS were used to characterize the physical and chemical properties of MMn_(2)O_(4)catalysts.The excellent redox properties,high concentration of surface Mn4+,and adsorption of oxygen species over the CuMn_(2)O_(4)sample facilitated the simultaneous and efficient removal of benzene and toluene.Additionally,in situ DRIFTS illustrated the intermediate species and reaction mechanism for the synergetic catalytic oxidation of benzene and toluene.Notably,as an effective catalytic material,spinel oxide exhibited excellent synergistic degradation performance for benzene and toluene,providing some insight for the development of efficient multicomponent VOC catalysts.展开更多
Toluene is widely used as a raw material for many chemical products/pharmaceutical intermediates and as a solvent in many chemical and manufacturing industries.The conversion of toluene into higher value chemicals(ben...Toluene is widely used as a raw material for many chemical products/pharmaceutical intermediates and as a solvent in many chemical and manufacturing industries.The conversion of toluene into higher value chemicals(benzyl alcohol,benzaldehyde,and benzoic acid,etc.)using sunlight is a very promising means.To achieve the full conversion and utilization of toluene,it is necessary to construct photocatalysts with high conversion and selectivity while synergistically optimizing the optimal reaction environment to significantly affect the photo-conversion of toluene.High-performance photocatalysts not only widely absorb sunlight,but also have abundant active sites and generation of free radicals,which can promote the chemical bonds cleavage of toluene,thus greatly increasing the yield of higher-valued products.In addition,the type of photocatalyst and the modification strategy would influence the selectivity of toluene photo-conversion.Therefore,it makes sense that this review presents the reaction mechanism and the influence of reaction factors for the(mainly)photo-oxidation of toluene,a thorough analysis and prediction of the reaction mechanism by theoretical calculations,and the toluene oxidation by different photocatalysts(in particular halogen-containing perovskite materials)to yield specific products,as well as photocatalysts’modifications.Finally,the challenges and prospects for designing efficient photocatalysts and optimizing the toluene oxidation reaction process are summarized.展开更多
Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the cha...Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the characteristic values,the carbon tetrachloride(CTC)adsorption value has demonstrated relatively stronger correlation with the toluene adsorption capacity on AC sampleswith diverse sources and forms,particularly in exposure to high-concentration toluene.Notably,the relevance of the toluene adsorption capacity to the CTC value could also be extended to a series of other porous adsorbents,which proved the wide applicability of CTC value in characterizing the adsorption behaviors.Based on these results,a mathematical and visual model was then established to predict the toluene adsorption saturation under different conditions(inlet concentration,adsorption time,initial CTC value,etc.)on diverse AC samples,of which the accuracy has later been verified by experimental data.As such,a fast and accurate estimation of the adsorption behaviors over AC samples,and possibly other porous adsorbents,was realized.展开更多
Themanganese-cobalt mixed oxide nanorodswere fabricated using a hydrothermalmethod with different metal precursors(KMnO_(4)and MnSO_(4)·H_(2)O for MnOx and Co(NO3)2>6H_(2)O and CoCl_(2)>6H_(2)O for Co_(3)O_...Themanganese-cobalt mixed oxide nanorodswere fabricated using a hydrothermalmethod with different metal precursors(KMnO_(4)and MnSO_(4)·H_(2)O for MnOx and Co(NO3)2>6H_(2)O and CoCl_(2)>6H_(2)O for Co_(3)O_(4)).Bamboo-like MnO_(2)>Co_(3)O_(4)(B-MnO_(2)>Co_(3)O_(4)(S))was derived from repeated hydrothermal treatments with Co_(3)O_(4)@MnO_(2)and MnSO_(4)>H_(2)O,whereas Co_(3)O_(4)@MnO_(2)nanorods were derived from hydrothermal treatment with Co_(3)O_(4)nanorods and KMnO_(4).The study shows that manganese oxide was tetragonal,while the cobalt oxide was found to be cubic in the crystalline arrangement.Mn surface ions were present in multiple oxidation states(e.g.,Mn^(4+)and Mn^(3+))and surface oxygen deficiencies.The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of BMnO_(2)>Co_(3)O_(4)(S)>Co_(3)O_(4)@MnO_(2)>MnO_(2)>Co_(3)O_(4),matching the changing trend in activity.Among all the samples,B-MnO_(2)>Co_(3)O_(4)(S)showed the preeminent catalytic performance for the oxidation of toluene(T10%=187℃,T50%=276℃,and T90%=339℃).In addition,the B-MnO_(2)>Co_(3)O_(4)(S)sample also exhibited good H_(2)O^(-),CO_(2)^(-),and SO_(2)^(-)resistant performance.The good catalytic performance of B-MnO_(2)>Co_(3)O_(4)(S)is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature.Toluene oxidation over B-MnO_(2)>Co_(3)O_(4)(S)proceeds through the adsorption of O_(2)and toluene to form O∗,OH∗,and H_(2)C(C6H5)∗species,which then react to produce benzyl alcohol,benzoic acid,and benzaldehyde,ultimately converting to CO_(2)and H_(2)O.The findings suggest that B-MnO_(2)>Co_(3)O_(4)(S)has promising potential for use as an effective catalyst in practical applications.展开更多
Herein,three supported catalysts,CuO/Al_(2)O_(3),CeO_(2)/Al_(2)O_(3),and CuO-CeO_(2)/Al_(2)O_(3),were synthesized by the convenient impregnation method to reveal the effect of CeO_(2)addition on catalytic performance ...Herein,three supported catalysts,CuO/Al_(2)O_(3),CeO_(2)/Al_(2)O_(3),and CuO-CeO_(2)/Al_(2)O_(3),were synthesized by the convenient impregnation method to reveal the effect of CeO_(2)addition on catalytic performance and reaction mechanism for toluene oxidation.Compared with CuO/Al_(2)O_(3),the T_(50)and T_(90)(the temperatures at 50%and 90%toluene conversion,respectively)of CuO-CeO_(2)/Al_(2)O_(3)were reduced by 33 and 39°C,respectively.N_(2)adsorptiondesorption experiment,XRD,SEM,EDS mapping,Raman,EPR,H_(2)-TPR,O_(2)-TPD,XPS,NH_(3)-TPD,Toluene-TPD,and in-situ DRIFTS were conducted to characterize these catalysts.The excellent catalytic performance of CuO-CeO_(2)/Al_(2)O_(3)could be attributed to its strong coppercerium interaction and high oxygen vacancies concentration.Moreover,in-situ DRIFTS proved that CuO-CeO_(2)/Al_(2)O_(3)promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene.This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.展开更多
In the present study,we investigated the influence of surface fluorine(F)on TiO_(2)for the photocatalytic oxidation(PCO)of toluene.TiO_(2)modified with different F content was prepared and tested.It was found that wit...In the present study,we investigated the influence of surface fluorine(F)on TiO_(2)for the photocatalytic oxidation(PCO)of toluene.TiO_(2)modified with different F content was prepared and tested.It was found that with the increasing of F content,the toluene conversion rate first increased and then decreased.However,CO_(2)mineralization efficiency showed the opposite trend.Based on the characterizations,we revealed that F substitutes the surface hydroxyl of TiO_(2)to form the structure of≡Ti-F.The presence of the appropriate amount of surface≡Ti-F on TiO_(2)greatly enhanced the separation of photogenerated carriers,which facilitated the generation of·OH and promoted the activity for the PCO of toluene.It was further revealed that the increase of only·OH promoted the conversion of toluene to ring-containing intermediates,causing the accumulation of intermediates and then conversely inhibited the·OH generation,which led to the decrease of the CO_(2)mineralization efficiency.The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.展开更多
Selective synthesis of value-added xylenes and para-xylene(PX)by CO_(2)hydrogenation reduces the dependence on fossil resource and relieves the environment burden derived from the greenhouse gas CO_(2).Herein,modified...Selective synthesis of value-added xylenes and para-xylene(PX)by CO_(2)hydrogenation reduces the dependence on fossil resource and relieves the environment burden derived from the greenhouse gas CO_(2).Herein,modified MCM-22 zeolite combined with ZnCeZrOx solid solution is reported to catalyze the tandem CO_(2)hydrogenation and toluene methylation reaction at a relatively low temperature(<603 K),showing xylene selectivity of 92.4%and PX selectivity of 62%(PX/X,67%)in total aromatics at a CO_(2)conversion of 7.7%,toluene conversion of 23.6%and low CO selectivity of 11.6%,as well as giving high STY of xylene(302.0 mg·h^(–1)·gcat^(–1))and PX(201.6 mg·h^(–1)·gcat^(–1)).The outstanding catalytic performances are closely related to decreased pore sizes and eliminated external surface acid sites in modified MCM-22,which promoted zeolite shape-selectivity and suppressed secondary reactions.展开更多
In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,...In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,BET,XPS and H_(2)-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg^(0) removal efficiency at 200℃.By varying the experimental gas components and conditions,it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg^(0).Although O_(2) promoted the abatement of toluene and Hg^(0),the inhibitory role of H_(2)O and SO_(2) offset the promoting effect of O_(2) to some extent.Toluene significantly inhibited Hg^(0) removal,resulting from that toluene was present at concentrations orders of magnitude greater than mercury’s or the catalyst was more prone to adsorb toluene,while Hg^(0) almost exerted non-existent influence on toluene elimination.The mechanistic analysis showed that the forms of toluene and Hg^(0) removal included both adsorption and oxidation,where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr^(3+)+Mn^(3+)/Mn^(4+)+Cr^(6+)+Mn^(2+),which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process,and even the CrMn_(1.5)O_(4) spinel structure could provide a larger catalytic interface,thus enhancing the adsorption/oxidation of toluene and Hg^(0).Therefore,its excellent physicochemical properties make it a costeffective potential industrial catalyst with outstanding synergistic toluene and Hg^(0) removal performance and preeminent resistance to H_(2)O and SO_(2).展开更多
This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is fou...This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is found that the toluene complete conversion over Pd/7.5Ce-beta zeolite occurs at 190℃,with a minimal increase of 20℃even after sulfur poisoning.It is shown that Ce-doping markedly enhances sulfur tolerance besides catalytic activity.The underlying mechanism involves CeO_(2)sites capturing sulfur species,thus safeguarding active Pd species from sulfur poisoning.It can be observed that Pd0active sites,which are crucial in the catalytic high activity,are still present in the most severely poisoned catalyst.Furthermore,Ce-modified catalyst exhibits a more stable pore structure and increased acid strength after sulfur poisoning,all of which are beneficial to improving the sulfur tolerance.Consequently,Pd/Ce-beta zeolite is a promising solution for processing sulfur-containing volatile organic compounds,offering valuable insights for developing effective and sustainable catalysts for environmental remediation.展开更多
Degrading volatile organic compounds at low temperatures and active sites aggregation are still challenging.In this study,a novel mesoporous zeolite silicalite-1(S-1–meso)enveloped Pt–Ni bimetallic catalysts(noted a...Degrading volatile organic compounds at low temperatures and active sites aggregation are still challenging.In this study,a novel mesoporous zeolite silicalite-1(S-1–meso)enveloped Pt–Ni bimetallic catalysts(noted as Pt1Ni1@S-1–meso)were synthesized via a facile in situ mesoporous template-free method.The Pt–Ni bimetallic nanoparticles were uniformly distributed and displayed a large specific surface area and enriched mesopores to facilitate the deep oxidation of toluene.The presence of the Pt–Ni O interface both increased the dispersion of the catalyst and improved its catalytic performance,thereby reducing the consumption of Pt.The Mars-van Krevelen mechanism and density function theory(DFT)calculations revealed that the Pt–Ni O interface effect changed the electronic structure of Pt and Ni species,reduced the activation potential for oxygen,formed reactive oxygen species,and facilitated the adsorption and activation of reactants in the direction favorable to the toluene oxidation.This study provides a guideline for minimizing the proportion of precious metals used in practical applications and a promising method for toluene elimination at low temperatures.展开更多
Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is...Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is particularly significant in challenging coupled systems,such as CO_(2)photoreduction integrated with selective oxidation of toluene to benzaldehyde.However,developing such a system is quite challenging and often requires a precise design and engineering.Herein,we demonstrate a unique Ni-CdS@Ni(OH)_(2)heterojunction synthesized via an in-situ self-assembly method.Comprehensive mechanistic and theoretical investigations reveal that the NiCdS@Ni(OH)_(2)heterojunction induces dual electric fields(EFs):an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)_(2)on NiCdS nanorods,enabling efficient spatial charge separation and enhanced redox potential.As proof of concept,the Ni-CdS@Ni(OH)_(2)heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance,producing CO at a rate of 427μmol g^(-1)h^(-1)and selectively oxidizing toluene to benzaldehyde at a rate of 1476μmol g^(-1)h^(-1)with a selectivity exceeding 85%.This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts,advancing synergistic photocatalytic redox systems.展开更多
Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by...Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by different amounts of cerium,which not only enhances the physicochemical stability but also increases the number of active sites of Ce_(x)Zr_(y)UiO-66.Furthermore,the catalysts with Co_(3)O_(4)nanoparticles supported on Ce_(x)Zr_(y)UiO-66 were successfully prepared via impregnation method.In the process of toluene degradation,the Co/Ce_(1)Zr_(2)-Ui0-66 attains a 90%conversion rate at 210℃with a space velocity of 60000 mL/(g·h)and toluene concentration at 1000×10^(-6).Meanwhile,the carbon dioxide selectivity reaches 100%at 218℃.The Co/Ce_(1)Zr_(2)-UiO-66 shows great water resistance(3 vol%H_(2)O).Multiple characterization methods were used to figure out the physicochemical properties of the catalysts.It is found that the addition of an appropriate amount of cerium can enhance stability of UiO-66 and surface lattice oxygen proportion.Additionally,the stronger electron transfer between Ce^(4+)and Co^(2+)enables the Co/Ce_(1)Zr_(2)-UiO-66 to possess more active surface oxygen species and Co_(3)+cationic species in all samples.展开更多
Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and ...Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time.展开更多
Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surf...Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.展开更多
Co-based catalysts are the most promising catalysts in catalytic oxidation of volatile organic compounds(VOCs).Precious metal doping is adopted to improve the catalytic activity of toluene on Co_(3)O_(4) catalysts,but...Co-based catalysts are the most promising catalysts in catalytic oxidation of volatile organic compounds(VOCs).Precious metal doping is adopted to improve the catalytic activity of toluene on Co_(3)O_(4) catalysts,but greatly increases its cost along with it.It is found that doping a small amount of rare earth(Ce,Pr,Sm and Nd)can dramatically promote the catalytic activity of Co_(3)O_(4).Especially,the Nd-doped Co_(3)O_(4) catalyst exhibits excellent catalytic activity with a toluene removal rate of 90% at 162.1℃,which is even better than that of Pt-doped Co_(3)O_(4).Compared with other rare earth metal doping,the Nd doping leads to a higher ratio of Co^(3+)/Co^(2+) and has more oxygen vacancies.The in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments show that the lattice oxygen of Nd-Co sample can be utilized at a quite low temperature,while that of pure Co_(3)O_(4) cannot engage in oxidation reaction when the temperature is below 200℃,which visually demonstrates the main reason for the improved catalytic performance of Nd-Co catalyst.展开更多
A series of rare earth metals modified birnessite manganese dioxides(RE-Mn)was synthesized by hydrothermal method and their catalytic degradation of toluene was investigated.Yb-Mn shows the best toluene oxidation acti...A series of rare earth metals modified birnessite manganese dioxides(RE-Mn)was synthesized by hydrothermal method and their catalytic degradation of toluene was investigated.Yb-Mn shows the best toluene oxidation activity with the conversion of T50%and T99%at 196 and 226℃,respectively.The physiochemical characterizations identified that the high catalytic performance and excellent stability of Yb-Mn are mainly associated with its higher molar ratios of Mn^(4+)/Mn^(3+),more lattice oxygen(Olatt),and better mobility of surface adsorbed oxygen(O_(ads)).Moreover,it is confirmed that introduction of Yb into birnessite MnO_(2) facilitates the production of acetic acid at lower temperature.These results can aid the design of high-efficiency manganese oxide catalysts for the catalytic combustion of VOCs.展开更多
Photocatalytic degradation of volatile organic compounds(VOCs)is a significant applying aspect of pho-tocatalysis.Both the modulation of photocatalysts and the rational dispersion of them on supports are key for solar...Photocatalytic degradation of volatile organic compounds(VOCs)is a significant applying aspect of pho-tocatalysis.Both the modulation of photocatalysts and the rational dispersion of them on supports are key for solar-driven VOC degradation.Conventional batch-type photoreactors have low efficiency while continuous-flow photoreactors suffer from the problem of incomplete removal of VOCs.Herein,aiming for continuous and complete degradation of toluene gas as the target contaminant,continuous-flow pho-tocatalytic degradation reactors were made by adhering the vanadium and nitrogen codoped TiO_(2)on honeycomb ceramics(V/N-TiO_(2)@HC)by a simple sol-gel method.In such a reactor,the rich ordered pores in the HC accelerate mass transport of toluene,and the introduction of V/N dopants narrows the bandgap and widens the light absorption range of TiO_(2),together resulting in continuous and nearly-complete pho-tocatalytic degradation of toluene.The unique and stable structure of HC allows the photocatalysts to be reused.The degradation rate of toluene gas can reach 97.8%,and after 24 rounds of photocatalytic degra-dation,there is still a degradation rate of 96.7%.The impacts of loading times and gaseous flow rate on the photocatalytic performance of V/N-TiO_(2)@HC are studied in detail.Our study provides a practical so-lution for the continuous and complete photocatalytic degradation of VOCs and opens a new application field for HC.展开更多
Photocatalytic oxidation technology is a promising green technology for degrading volatile organic compounds(VOCs)due to its non-toxic,environmentally friendly,energy-saving and affordable characteristics.In this pape...Photocatalytic oxidation technology is a promising green technology for degrading volatile organic compounds(VOCs)due to its non-toxic,environmentally friendly,energy-saving and affordable characteristics.In this paper,Ag/TiO_(2)@PANI-MC with high stability and activity was synthesized by the mechanochemical method.The designed Ag/TiO_(2)@PANI-MC were of high specific surface area,light absorption capacity and low recombination rate of electronehole pairs,which was demonstrated by various characterizations.When applied in photocatalytic toluene oxidation,the conversion is 17%at 20℃under 100 W high-pressure mercury lamp.This photocatalytic performance is with less temperature sensitivity and significantly improved compared with Ag/TiO_(2)or TiO_(2)catalysts.Furthermore,the reaction routine was also confirmed by gas chromatography-mass spectrometry and toluene was mineralized to CO_(2).More importantly,the Ag/TiO_(2)@PANI-MC indicated good reusability after three cycles,which was verified by the Fourier transform-infrared spectroscopy comparison with fresh and used catalysts.Our work proves a potential way of constructing nanocomposites based on mechanochemical synthesis for enhanced toluene photocatalytic degradation.展开更多
Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated d...Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.展开更多
TiO_(2) nanobelts and Co_(3)O_(4)/TiO_(2) catalytic materials were prepared using the hydrothermal method.The cat-alyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microsc...TiO_(2) nanobelts and Co_(3)O_(4)/TiO_(2) catalytic materials were prepared using the hydrothermal method.The cat-alyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,X-ray electron spectroscopy,and fluorescence spectroscopy.At room temperature,with a relative humidity of 50.0%,the total gas flow rate of 1.0 L·min-1,the space velocity of 1.05×10^(4) h^(-1),and toluene volume concentration of 25.0µL·L^(-1),two 6 W vacuum ultraviolet lamps were used as light sources to catalyze,degrade,and mineralize toluene.The results show that the prepared catalyst is in the shape of nano-ribbons.The loading of Co_(3)O_(4) inhibits the recombina-tion of photogenerated electrons and holes and can effectively improve the catalytic performance.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%Co_(3)O_(4) has the best catalytic effect.When N2 was used as a carrier gas,the degradation rate of tol-uene was only 34.7%.The toluene degradation is mainly due to the photolysis of vacuum ultraviolet light.When air was used as a carrier gas,O_(3) was produced.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%and vacuum ultraviolet synergistical-ly promote toluene degradation.The highest degradation rate of toluene was 91.7%and the mineralization rate was 74.6%.The degradation rate of toluene was 2.6 times that of nitrogen as a carrier gas.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22206146,22006079,and U21A20524)the Fundamental Research Funds for the Central Universities,the Youth Innovation Promotion Association of Chinese Academy of Sciences,the Fundamental Research Program of Shanxi Province(No.202103021223280)+1 种基金the Special Fund for Science and Technology Innovation Teams of Shanxi Province(No.202204051002026)the Natural Science Foundation of Shandong Province(No.ZR2021QB133).
文摘Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully synthesized via the sol–gel method and tested for their catalytic performance for simultaneous degradation of benzene and toluene.The CuMn_(2)O_(4)sample exhibited the best catalytic performance,the conversion of benzene reached 100%at 350℃,and toluene conversion reached 100%at 250℃.XRD,N_(2)adsorption-desorption,HRTEM-EDS,ED-XRF,Raman spectroscopy,H_(2)-TPR,NH_(3)-TPD,O_(2)-TPD and XPS were used to characterize the physical and chemical properties of MMn_(2)O_(4)catalysts.The excellent redox properties,high concentration of surface Mn4+,and adsorption of oxygen species over the CuMn_(2)O_(4)sample facilitated the simultaneous and efficient removal of benzene and toluene.Additionally,in situ DRIFTS illustrated the intermediate species and reaction mechanism for the synergetic catalytic oxidation of benzene and toluene.Notably,as an effective catalytic material,spinel oxide exhibited excellent synergistic degradation performance for benzene and toluene,providing some insight for the development of efficient multicomponent VOC catalysts.
基金supported by the Natural Sciences and Engineering Research Council of Canada-Discovery Grant(Canada).
文摘Toluene is widely used as a raw material for many chemical products/pharmaceutical intermediates and as a solvent in many chemical and manufacturing industries.The conversion of toluene into higher value chemicals(benzyl alcohol,benzaldehyde,and benzoic acid,etc.)using sunlight is a very promising means.To achieve the full conversion and utilization of toluene,it is necessary to construct photocatalysts with high conversion and selectivity while synergistically optimizing the optimal reaction environment to significantly affect the photo-conversion of toluene.High-performance photocatalysts not only widely absorb sunlight,but also have abundant active sites and generation of free radicals,which can promote the chemical bonds cleavage of toluene,thus greatly increasing the yield of higher-valued products.In addition,the type of photocatalyst and the modification strategy would influence the selectivity of toluene photo-conversion.Therefore,it makes sense that this review presents the reaction mechanism and the influence of reaction factors for the(mainly)photo-oxidation of toluene,a thorough analysis and prediction of the reaction mechanism by theoretical calculations,and the toluene oxidation by different photocatalysts(in particular halogen-containing perovskite materials)to yield specific products,as well as photocatalysts’modifications.Finally,the challenges and prospects for designing efficient photocatalysts and optimizing the toluene oxidation reaction process are summarized.
基金supported by the Key Research and Development Projects in Zhejiang Province(Nos.2023C03127,2024C03114,2024C03108)the Natural Science Foundation of China(Nos.22208300,22078294)+2 种基金the Natural Science Foundation of Zhejiang Province(No.LQ23B060007)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RF-A2023004)Zhejiang Provincial Postdoctoral Science Foundation(No.ZJ2023145).
文摘Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the characteristic values,the carbon tetrachloride(CTC)adsorption value has demonstrated relatively stronger correlation with the toluene adsorption capacity on AC sampleswith diverse sources and forms,particularly in exposure to high-concentration toluene.Notably,the relevance of the toluene adsorption capacity to the CTC value could also be extended to a series of other porous adsorbents,which proved the wide applicability of CTC value in characterizing the adsorption behaviors.Based on these results,a mathematical and visual model was then established to predict the toluene adsorption saturation under different conditions(inlet concentration,adsorption time,initial CTC value,etc.)on diverse AC samples,of which the accuracy has later been verified by experimental data.As such,a fast and accurate estimation of the adsorption behaviors over AC samples,and possibly other porous adsorbents,was realized.
基金supported by the National Natural Science Foundation Committee of China-Liaoning Provincial People’s Government Joint Fund(No.U1908204)the National Natural Science Foundation of China(Nos.21876006 and 21976009)+2 种基金the Natural Science Foundation of Beijing Municipal Commission of Education(No.KM201710005004)the Development Program for the Youth Outstanding-Notch Talent of Beijing Municipal Commission of Education(No.CIT&TCD201904019)the Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(No.IDHT20190503).
文摘Themanganese-cobalt mixed oxide nanorodswere fabricated using a hydrothermalmethod with different metal precursors(KMnO_(4)and MnSO_(4)·H_(2)O for MnOx and Co(NO3)2>6H_(2)O and CoCl_(2)>6H_(2)O for Co_(3)O_(4)).Bamboo-like MnO_(2)>Co_(3)O_(4)(B-MnO_(2)>Co_(3)O_(4)(S))was derived from repeated hydrothermal treatments with Co_(3)O_(4)@MnO_(2)and MnSO_(4)>H_(2)O,whereas Co_(3)O_(4)@MnO_(2)nanorods were derived from hydrothermal treatment with Co_(3)O_(4)nanorods and KMnO_(4).The study shows that manganese oxide was tetragonal,while the cobalt oxide was found to be cubic in the crystalline arrangement.Mn surface ions were present in multiple oxidation states(e.g.,Mn^(4+)and Mn^(3+))and surface oxygen deficiencies.The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of BMnO_(2)>Co_(3)O_(4)(S)>Co_(3)O_(4)@MnO_(2)>MnO_(2)>Co_(3)O_(4),matching the changing trend in activity.Among all the samples,B-MnO_(2)>Co_(3)O_(4)(S)showed the preeminent catalytic performance for the oxidation of toluene(T10%=187℃,T50%=276℃,and T90%=339℃).In addition,the B-MnO_(2)>Co_(3)O_(4)(S)sample also exhibited good H_(2)O^(-),CO_(2)^(-),and SO_(2)^(-)resistant performance.The good catalytic performance of B-MnO_(2)>Co_(3)O_(4)(S)is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature.Toluene oxidation over B-MnO_(2)>Co_(3)O_(4)(S)proceeds through the adsorption of O_(2)and toluene to form O∗,OH∗,and H_(2)C(C6H5)∗species,which then react to produce benzyl alcohol,benzoic acid,and benzaldehyde,ultimately converting to CO_(2)and H_(2)O.The findings suggest that B-MnO_(2)>Co_(3)O_(4)(S)has promising potential for use as an effective catalyst in practical applications.
基金supported by the Science and Technology Program of Guangzhou,China(No.202002020020)the National Natural Science Foundation of China(Nos.51878292 and 42002035).
文摘Herein,three supported catalysts,CuO/Al_(2)O_(3),CeO_(2)/Al_(2)O_(3),and CuO-CeO_(2)/Al_(2)O_(3),were synthesized by the convenient impregnation method to reveal the effect of CeO_(2)addition on catalytic performance and reaction mechanism for toluene oxidation.Compared with CuO/Al_(2)O_(3),the T_(50)and T_(90)(the temperatures at 50%and 90%toluene conversion,respectively)of CuO-CeO_(2)/Al_(2)O_(3)were reduced by 33 and 39°C,respectively.N_(2)adsorptiondesorption experiment,XRD,SEM,EDS mapping,Raman,EPR,H_(2)-TPR,O_(2)-TPD,XPS,NH_(3)-TPD,Toluene-TPD,and in-situ DRIFTS were conducted to characterize these catalysts.The excellent catalytic performance of CuO-CeO_(2)/Al_(2)O_(3)could be attributed to its strong coppercerium interaction and high oxygen vacancies concentration.Moreover,in-situ DRIFTS proved that CuO-CeO_(2)/Al_(2)O_(3)promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene.This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.
基金supported by the National Natural Science Foundation of China(Nos.21976196,22276204).
文摘In the present study,we investigated the influence of surface fluorine(F)on TiO_(2)for the photocatalytic oxidation(PCO)of toluene.TiO_(2)modified with different F content was prepared and tested.It was found that with the increasing of F content,the toluene conversion rate first increased and then decreased.However,CO_(2)mineralization efficiency showed the opposite trend.Based on the characterizations,we revealed that F substitutes the surface hydroxyl of TiO_(2)to form the structure of≡Ti-F.The presence of the appropriate amount of surface≡Ti-F on TiO_(2)greatly enhanced the separation of photogenerated carriers,which facilitated the generation of·OH and promoted the activity for the PCO of toluene.It was further revealed that the increase of only·OH promoted the conversion of toluene to ring-containing intermediates,causing the accumulation of intermediates and then conversely inhibited the·OH generation,which led to the decrease of the CO_(2)mineralization efficiency.The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.
文摘Selective synthesis of value-added xylenes and para-xylene(PX)by CO_(2)hydrogenation reduces the dependence on fossil resource and relieves the environment burden derived from the greenhouse gas CO_(2).Herein,modified MCM-22 zeolite combined with ZnCeZrOx solid solution is reported to catalyze the tandem CO_(2)hydrogenation and toluene methylation reaction at a relatively low temperature(<603 K),showing xylene selectivity of 92.4%and PX selectivity of 62%(PX/X,67%)in total aromatics at a CO_(2)conversion of 7.7%,toluene conversion of 23.6%and low CO selectivity of 11.6%,as well as giving high STY of xylene(302.0 mg·h^(–1)·gcat^(–1))and PX(201.6 mg·h^(–1)·gcat^(–1)).The outstanding catalytic performances are closely related to decreased pore sizes and eliminated external surface acid sites in modified MCM-22,which promoted zeolite shape-selectivity and suppressed secondary reactions.
基金supported by the Scientific Research Project of Hunan Provincial Department of Education (No.22B0458)the National Natural Science Foundation of China (No.52270102).
文摘In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,BET,XPS and H_(2)-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg^(0) removal efficiency at 200℃.By varying the experimental gas components and conditions,it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg^(0).Although O_(2) promoted the abatement of toluene and Hg^(0),the inhibitory role of H_(2)O and SO_(2) offset the promoting effect of O_(2) to some extent.Toluene significantly inhibited Hg^(0) removal,resulting from that toluene was present at concentrations orders of magnitude greater than mercury’s or the catalyst was more prone to adsorb toluene,while Hg^(0) almost exerted non-existent influence on toluene elimination.The mechanistic analysis showed that the forms of toluene and Hg^(0) removal included both adsorption and oxidation,where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr^(3+)+Mn^(3+)/Mn^(4+)+Cr^(6+)+Mn^(2+),which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process,and even the CrMn_(1.5)O_(4) spinel structure could provide a larger catalytic interface,thus enhancing the adsorption/oxidation of toluene and Hg^(0).Therefore,its excellent physicochemical properties make it a costeffective potential industrial catalyst with outstanding synergistic toluene and Hg^(0) removal performance and preeminent resistance to H_(2)O and SO_(2).
基金Project supported by Zhejiang Public Welfare Technology Research Project(LGG19B070003)the National Natural Science Foundation of China(21902069)。
文摘This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is found that the toluene complete conversion over Pd/7.5Ce-beta zeolite occurs at 190℃,with a minimal increase of 20℃even after sulfur poisoning.It is shown that Ce-doping markedly enhances sulfur tolerance besides catalytic activity.The underlying mechanism involves CeO_(2)sites capturing sulfur species,thus safeguarding active Pd species from sulfur poisoning.It can be observed that Pd0active sites,which are crucial in the catalytic high activity,are still present in the most severely poisoned catalyst.Furthermore,Ce-modified catalyst exhibits a more stable pore structure and increased acid strength after sulfur poisoning,all of which are beneficial to improving the sulfur tolerance.Consequently,Pd/Ce-beta zeolite is a promising solution for processing sulfur-containing volatile organic compounds,offering valuable insights for developing effective and sustainable catalysts for environmental remediation.
基金supported by the National Natural Science Foundation of China(Nos.22276086,21976078)the Natural Science Foundation of Jiangxi Province(Nos.20202ACB213001,20232BCJ22003)。
文摘Degrading volatile organic compounds at low temperatures and active sites aggregation are still challenging.In this study,a novel mesoporous zeolite silicalite-1(S-1–meso)enveloped Pt–Ni bimetallic catalysts(noted as Pt1Ni1@S-1–meso)were synthesized via a facile in situ mesoporous template-free method.The Pt–Ni bimetallic nanoparticles were uniformly distributed and displayed a large specific surface area and enriched mesopores to facilitate the deep oxidation of toluene.The presence of the Pt–Ni O interface both increased the dispersion of the catalyst and improved its catalytic performance,thereby reducing the consumption of Pt.The Mars-van Krevelen mechanism and density function theory(DFT)calculations revealed that the Pt–Ni O interface effect changed the electronic structure of Pt and Ni species,reduced the activation potential for oxygen,formed reactive oxygen species,and facilitated the adsorption and activation of reactants in the direction favorable to the toluene oxidation.This study provides a guideline for minimizing the proportion of precious metals used in practical applications and a promising method for toluene elimination at low temperatures.
基金The authors sincerely appreciate funding from“Producing Hydrogen in Trentino-H2@TN”(PAT-Trento)through the research grant(SAP 40104237)Researchers Supporting Project number(RSP2025R399)King Saud University,Riyadh,Saudi Arabia.
文摘Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is particularly significant in challenging coupled systems,such as CO_(2)photoreduction integrated with selective oxidation of toluene to benzaldehyde.However,developing such a system is quite challenging and often requires a precise design and engineering.Herein,we demonstrate a unique Ni-CdS@Ni(OH)_(2)heterojunction synthesized via an in-situ self-assembly method.Comprehensive mechanistic and theoretical investigations reveal that the NiCdS@Ni(OH)_(2)heterojunction induces dual electric fields(EFs):an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)_(2)on NiCdS nanorods,enabling efficient spatial charge separation and enhanced redox potential.As proof of concept,the Ni-CdS@Ni(OH)_(2)heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance,producing CO at a rate of 427μmol g^(-1)h^(-1)and selectively oxidizing toluene to benzaldehyde at a rate of 1476μmol g^(-1)h^(-1)with a selectivity exceeding 85%.This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts,advancing synergistic photocatalytic redox systems.
基金Project supported by National Natural Science Foundation of China(22076180)Youth Innovation Promotion Association of CAS(2019376)Chongqing Bayu Scholar Program(Young Scholar,YS2020048)。
文摘Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by different amounts of cerium,which not only enhances the physicochemical stability but also increases the number of active sites of Ce_(x)Zr_(y)UiO-66.Furthermore,the catalysts with Co_(3)O_(4)nanoparticles supported on Ce_(x)Zr_(y)UiO-66 were successfully prepared via impregnation method.In the process of toluene degradation,the Co/Ce_(1)Zr_(2)-Ui0-66 attains a 90%conversion rate at 210℃with a space velocity of 60000 mL/(g·h)and toluene concentration at 1000×10^(-6).Meanwhile,the carbon dioxide selectivity reaches 100%at 218℃.The Co/Ce_(1)Zr_(2)-UiO-66 shows great water resistance(3 vol%H_(2)O).Multiple characterization methods were used to figure out the physicochemical properties of the catalysts.It is found that the addition of an appropriate amount of cerium can enhance stability of UiO-66 and surface lattice oxygen proportion.Additionally,the stronger electron transfer between Ce^(4+)and Co^(2+)enables the Co/Ce_(1)Zr_(2)-UiO-66 to possess more active surface oxygen species and Co_(3)+cationic species in all samples.
基金supported by the National Natural Science Foundation of China(52272222)the Taishan Scholar Young Talent Program(tsqn201909114,tsqn201909123)the University Youth Innovation Team of Shandong Province(202201010318)。
文摘Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time.
基金supported by the National Natural Science Foundation(No.51678291)the Basic Science(Natural Science)Research in Higher Education in Jiangsu Province(No.23KJA610003)the High-level Scientific Research Foundation for the introduction of talent in Nanjing Institute of Technology(No.YKJ201999)。
文摘Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.
基金Project supported by the Sichuan Provincial Science and Technology Agency Support Projects(2020YFG0066)Young Talent Team Science and Technology Innovation Project of Sichuan Province(2020JDTD0005)。
文摘Co-based catalysts are the most promising catalysts in catalytic oxidation of volatile organic compounds(VOCs).Precious metal doping is adopted to improve the catalytic activity of toluene on Co_(3)O_(4) catalysts,but greatly increases its cost along with it.It is found that doping a small amount of rare earth(Ce,Pr,Sm and Nd)can dramatically promote the catalytic activity of Co_(3)O_(4).Especially,the Nd-doped Co_(3)O_(4) catalyst exhibits excellent catalytic activity with a toluene removal rate of 90% at 162.1℃,which is even better than that of Pt-doped Co_(3)O_(4).Compared with other rare earth metal doping,the Nd doping leads to a higher ratio of Co^(3+)/Co^(2+) and has more oxygen vacancies.The in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments show that the lattice oxygen of Nd-Co sample can be utilized at a quite low temperature,while that of pure Co_(3)O_(4) cannot engage in oxidation reaction when the temperature is below 200℃,which visually demonstrates the main reason for the improved catalytic performance of Nd-Co catalyst.
基金Project supported by the Sichuan Provincial Science and Technology Agency Support Projects(2020YFG0066)。
文摘A series of rare earth metals modified birnessite manganese dioxides(RE-Mn)was synthesized by hydrothermal method and their catalytic degradation of toluene was investigated.Yb-Mn shows the best toluene oxidation activity with the conversion of T50%and T99%at 196 and 226℃,respectively.The physiochemical characterizations identified that the high catalytic performance and excellent stability of Yb-Mn are mainly associated with its higher molar ratios of Mn^(4+)/Mn^(3+),more lattice oxygen(Olatt),and better mobility of surface adsorbed oxygen(O_(ads)).Moreover,it is confirmed that introduction of Yb into birnessite MnO_(2) facilitates the production of acetic acid at lower temperature.These results can aid the design of high-efficiency manganese oxide catalysts for the catalytic combustion of VOCs.
基金financial support of this work from the Key Research and Development Project of Gansu Province(No.20YF3GA008)the Lanzhou Science and Technology Lanzhou Science and Technology Bureau Project(No.2022-2-15)+1 种基金Gansu Provincial Science and Technology Commissioner Special Project(No.22CX8GA106)Key Research and Development Project of Gansu Natural Energy Institute(No.2019YF-02).
文摘Photocatalytic degradation of volatile organic compounds(VOCs)is a significant applying aspect of pho-tocatalysis.Both the modulation of photocatalysts and the rational dispersion of them on supports are key for solar-driven VOC degradation.Conventional batch-type photoreactors have low efficiency while continuous-flow photoreactors suffer from the problem of incomplete removal of VOCs.Herein,aiming for continuous and complete degradation of toluene gas as the target contaminant,continuous-flow pho-tocatalytic degradation reactors were made by adhering the vanadium and nitrogen codoped TiO_(2)on honeycomb ceramics(V/N-TiO_(2)@HC)by a simple sol-gel method.In such a reactor,the rich ordered pores in the HC accelerate mass transport of toluene,and the introduction of V/N dopants narrows the bandgap and widens the light absorption range of TiO_(2),together resulting in continuous and nearly-complete pho-tocatalytic degradation of toluene.The unique and stable structure of HC allows the photocatalysts to be reused.The degradation rate of toluene gas can reach 97.8%,and after 24 rounds of photocatalytic degra-dation,there is still a degradation rate of 96.7%.The impacts of loading times and gaseous flow rate on the photocatalytic performance of V/N-TiO_(2)@HC are studied in detail.Our study provides a practical so-lution for the continuous and complete photocatalytic degradation of VOCs and opens a new application field for HC.
基金supported by the National Key Research and Development Program(2022YFC3702003)the Key Research and Development Projects in Zhejiang Province(2024C03114).
文摘Photocatalytic oxidation technology is a promising green technology for degrading volatile organic compounds(VOCs)due to its non-toxic,environmentally friendly,energy-saving and affordable characteristics.In this paper,Ag/TiO_(2)@PANI-MC with high stability and activity was synthesized by the mechanochemical method.The designed Ag/TiO_(2)@PANI-MC were of high specific surface area,light absorption capacity and low recombination rate of electronehole pairs,which was demonstrated by various characterizations.When applied in photocatalytic toluene oxidation,the conversion is 17%at 20℃under 100 W high-pressure mercury lamp.This photocatalytic performance is with less temperature sensitivity and significantly improved compared with Ag/TiO_(2)or TiO_(2)catalysts.Furthermore,the reaction routine was also confirmed by gas chromatography-mass spectrometry and toluene was mineralized to CO_(2).More importantly,the Ag/TiO_(2)@PANI-MC indicated good reusability after three cycles,which was verified by the Fourier transform-infrared spectroscopy comparison with fresh and used catalysts.Our work proves a potential way of constructing nanocomposites based on mechanochemical synthesis for enhanced toluene photocatalytic degradation.
基金supported by National Natural Science Foundation of China(No.52177130)the Key Projects for Industrial Prospects and Core Technology Research in Suzhou City(No.SYC2022029)。
文摘Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.
文摘TiO_(2) nanobelts and Co_(3)O_(4)/TiO_(2) catalytic materials were prepared using the hydrothermal method.The cat-alyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,X-ray electron spectroscopy,and fluorescence spectroscopy.At room temperature,with a relative humidity of 50.0%,the total gas flow rate of 1.0 L·min-1,the space velocity of 1.05×10^(4) h^(-1),and toluene volume concentration of 25.0µL·L^(-1),two 6 W vacuum ultraviolet lamps were used as light sources to catalyze,degrade,and mineralize toluene.The results show that the prepared catalyst is in the shape of nano-ribbons.The loading of Co_(3)O_(4) inhibits the recombina-tion of photogenerated electrons and holes and can effectively improve the catalytic performance.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%Co_(3)O_(4) has the best catalytic effect.When N2 was used as a carrier gas,the degradation rate of tol-uene was only 34.7%.The toluene degradation is mainly due to the photolysis of vacuum ultraviolet light.When air was used as a carrier gas,O_(3) was produced.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%and vacuum ultraviolet synergistical-ly promote toluene degradation.The highest degradation rate of toluene was 91.7%and the mineralization rate was 74.6%.The degradation rate of toluene was 2.6 times that of nitrogen as a carrier gas.