Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this pa...Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this paper, the boundedness of Tb on weighted Morrey space are obtained when b belongs to the weighted Lipschitz function space and weighted BMO function space, respectively.展开更多
In this paper, we prove the M^(k)-type sharp maximal function estimates for the Toeplitz type operators associated to the fractional integral and singular integral operator with non-smooth kernel. As an application, w...In this paper, we prove the M^(k)-type sharp maximal function estimates for the Toeplitz type operators associated to the fractional integral and singular integral operator with non-smooth kernel. As an application, we obtain the boundedness of the operators on the Morrey space.展开更多
Let L be the infinitesimal generator of an analytic semigroup on L 2 (Rn)with Gaussian kernel bounds,and L-α/ 2 be the fractional integrals generated by L for 0< α<n.Let Tj,1 be the singular integral with nons...Let L be the infinitesimal generator of an analytic semigroup on L 2 (Rn)with Gaussian kernel bounds,and L-α/ 2 be the fractional integrals generated by L for 0< α<n.Let Tj,1 be the singular integral with nonsmooth kernel related to L,or Tj,1=I, Tj,2,Tj,4 be the linear operators,which are bounded on Lp(Rn)for 1<p<∞,and Tj,3=±I(j=1,2,···,m),where I is the identity operator.For b∈L 1 loc (Rn),denote the Toeplitz-type operator byΘαbfmj=1(Tj,1MbIαTj,2 + Tj,3MbIαTj,4),where Mb is a multiplication ope...展开更多
In this paper,the boundedness from Lebesgue space to Orlicz space of certain Toeplitz type operator related to the fractional and pseudo-differential operators is obtained.
文摘Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this paper, the boundedness of Tb on weighted Morrey space are obtained when b belongs to the weighted Lipschitz function space and weighted BMO function space, respectively.
基金Supported by the National Natural Science Foundation of China (Grant No. 11901126)the Scientific Research Funds of Hunan Provincial Education Department (Grant No. 19B509)。
文摘In this paper, we prove the M^(k)-type sharp maximal function estimates for the Toeplitz type operators associated to the fractional integral and singular integral operator with non-smooth kernel. As an application, we obtain the boundedness of the operators on the Morrey space.
基金Supported by the NNSF of China(10571014)SEDF of China(20040027001)
文摘Let L be the infinitesimal generator of an analytic semigroup on L 2 (Rn)with Gaussian kernel bounds,and L-α/ 2 be the fractional integrals generated by L for 0< α<n.Let Tj,1 be the singular integral with nonsmooth kernel related to L,or Tj,1=I, Tj,2,Tj,4 be the linear operators,which are bounded on Lp(Rn)for 1<p<∞,and Tj,3=±I(j=1,2,···,m),where I is the identity operator.For b∈L 1 loc (Rn),denote the Toeplitz-type operator byΘαbfmj=1(Tj,1MbIαTj,2 + Tj,3MbIαTj,4),where Mb is a multiplication ope...
基金supported by the National Natural Science Foundation of China(Grant No.11901126)the Scientific Research Funds of Hunan Provincial Education Department.(Grant No.19B509).
文摘In this paper,the boundedness from Lebesgue space to Orlicz space of certain Toeplitz type operator related to the fractional and pseudo-differential operators is obtained.