期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Toehold-mediated strand displacement reaction-propelled cascade DNAzyme amplifier for microRNA let-7a detection 被引量:1
1
作者 Na Wang Yongjian Jiang +5 位作者 Kunhan Nie Di Li Hui Liu Jian Wang Chengzhi Huang Chunmei Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期211-214,共4页
DNAzyme amplifiers have been extensively explored as a useful sensing platform,but single DNAzyme amplifier is limited in biosensing applications by its low sensitivity.Herein,a cascade DNAzyme amplifier was designed ... DNAzyme amplifiers have been extensively explored as a useful sensing platform,but single DNAzyme amplifier is limited in biosensing applications by its low sensitivity.Herein,a cascade DNAzyme amplifier was designed by exploiting concurrent amplification cycle principles of toehold-mediated strand displacement reaction(TSDR)and Zn^(2+)-assisted DNAzyme cycle with lower cost and simpler procedures.Compared with single DNAzyme amplifier,the proposed TSDR-propelled cascade DNAzyme amplifier exhibited higher sensitivity by releasing more DNAzyme through TSDR to cleave substrate strand during the DNAzyme cycle.Base on this,let-7a could be sensitively detected in the range of 5-50 nmol/L with a detection limit of 64 pmol/L.Furthermore,the dual signal amplification strategy of the cascade DNAzyme amplifier exhibited excellent selectivity to distinguish single-base mismatched DNA strands,which has been successfully applied to the determination of let-7a in blood serum,showing high promise in early cancer diagnosis. 展开更多
关键词 DNAzyme amplifier toehold-mediated strand displacement reaction Signal amplification let-7a Cancer marker
原文传递
Recent advances in molecular machines based on toehold-mediated strand displacement reaction
2
作者 Yijun Guo Bing Wei +6 位作者 Shiyan Xiao Dongbao Yao Hui Li Huaguo Xu Tingjie Song Xiang Li Haojun Liang 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2017年第1期25-41,共17页
Background: The DNA strand displacement reaction, which uses flexible and programmable DNA molecules as reaction components, is the basis of dynamic DNA nanotechnology, and has been widely used in the design of compl... Background: The DNA strand displacement reaction, which uses flexible and programmable DNA molecules as reaction components, is the basis of dynamic DNA nanotechnology, and has been widely used in the design of complex autonomous behaviors. Results: In this review, we first briefly introduce the concept of toehold-mediated strand displacement reaction and its kinetics regulation in pure solution. Thereafter, we review the recent progresses in DNA complex circuit, the assembly of AuNPs driven by DNA molecular machines, and the detection of single nucleotide polymorphism (SNP) using DNA toehold exchange probes in pure solution and in interface state. Lastly, the applications of toehold-mediated strand displacement in the genetic regulation and silencing through combining gene circuit with RNA interference systems are reviewed. Conclusions: The toehold-mediated strand displacement reaction makes DNA an excellent material for the fabrication of molecular machines and complex circuit, and may potentially be used in the disease diagnosis and the regulation of gene silencing in the near future. 展开更多
关键词 toehold-mediated strand displacement DNA molecular machines SNP gene expression regulation
原文传递
Ultrasensitive detection of micro RNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods
3
作者 Min Huang Ru Cheng +6 位作者 Shuai Wen Liangtong Li Jie Gao Xiaohui Zhao Chunmei Li Hongyan Zou Jian Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期382-386,共5页
Natural enzymes,such as horseradish peroxidase(HRP),are a class of important biocatalysts with the high specificity,but their catalytic efficiency is usually unsatisfactory.Thus,the higher catalytic efficiency induced... Natural enzymes,such as horseradish peroxidase(HRP),are a class of important biocatalysts with the high specificity,but their catalytic efficiency is usually unsatisfactory.Thus,the higher catalytic efficiency induced by the confinement effect is promising in optical sensing systems.In this work,a dark-field light scattering sensing platform was fabricated by the confinement effect of HRP from hybridization chain reaction(HCR)and then released to solution by the toehold-mediated strand displacement reaction(TSDR).Then,HRP catalyzed the 3,3,5,5-tetramethylbenzidine(TMB)to TMB^(2+)with the assistance of hydrogen peroxide,which etched the gold nanorods(Au NRs)with the weakened light scattering.The single-particle assay was established based on the decreased light scattering intensity of AuNRs under dark-field microscope.The proposed assay revealed excellent analytical performance within a linear range from 25 pmol/L to 600 pmol/L,and a low limit of detection of 3.12 pmol/L.Additionally,it also manifested satisfactory recovery of mi RNA-21 in human serum samples.The high sensitivity,excellent specificity,and universal applicability make this sensing platform promising for disease diagnosis. 展开更多
关键词 Confinement effect Hybridization chain reaction toehold-mediated strand displacement REACTION MICRORNA-21 Gold nanorods Dark-field microscope
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部