In recent years, two online service giants have emerged in China to dominate their respective industries. Meituan-Dianpinghas maintained a firm hold on the online food delivery sector, while Didi Chuxing retains 90 pe...In recent years, two online service giants have emerged in China to dominate their respective industries. Meituan-Dianpinghas maintained a firm hold on the online food delivery sector, while Didi Chuxing retains 90 percent of the country's ride-hailing business, having acquired Uber's China venture back in 2016. Now, however, the two companies have each thrown down the gauntlet, challenging the other for a stake in their main business.展开更多
Introduction Pure NBT exhibits the frequency-dependent Curie temperature,indicating that its dielectric properties are affected by temperature,measurement frequency,and material processing condition.To enhance the die...Introduction Pure NBT exhibits the frequency-dependent Curie temperature,indicating that its dielectric properties are affected by temperature,measurement frequency,and material processing condition.To enhance the dielectric and relaxor properties of NBT,various dopants such as Sr,K,Li and Bi are incorporated into the NBT structure.These modifications significantly alter the dielectric constant and relaxation behavior,demonstrating a dominant influence of dopant on the material properties.Among these,the solid solution of BaTiO_(3)(BT)with NBT is widely investigated due to its ability to stabilize the perovskite structure and improve dielectric performance.However,the temperature-dependent stability of dielectric properties remains a critical challenge for high-temperature applications.In this study,(1-x)(0.75Na_(0.5)Bi_(0.5)TiO_(3)-0.25BaTiO_(3))-xBaZrO_(3)(NBT-BT-xBZ,x=0,0.08,0.14,and 0.20)ceramics were prepared by a solid-state reaction method.The effect of BaZrO_(3)(BZ)addition on the structural,dielectric,and energy storage properties was systematically investigated.In addition,the phase transition and relaxation behaviors were also analyzed based on the modified Curie-Weiss law,Vogel-Fulcher relation,and Lorentz-type empirical law.Methods The starting materials were powders of high purity Na_(2)CO_(3),Bi_(2)O_(3),TiO_(2),BaCO_(3),and ZrO_(2).The powders were weighed according to a stoichiometric ratio(with 1%excess of Na and Bi)and ground with ethanol in a ball mill at 300 r/min for more than 12 h,and the weight ratio of raw material to ethanol and zirconium balls was 1:1:2.The dried material was heat-treated at 850℃ for 2 h to promote the formation of NBT-BT-BZ.After further grinding for 12 h,the samples were mixed with a small amount of polyvinyl alcohol(PVA).The samples were sintered in air at 1150℃for 2 h and cooled to room temperature.The phase composition of the ceramic samples was determined by an model D8 ADVANDCE X-ray diffractometer(D8 ADVANDCEXRD,Bruker AXS Ltd.,Germany)with Cu target Kαrays,at X-ray wavelengthλof 1.5406Å,2θin the range of 10°to 80°,applied voltage of 40 kV,and a current of 500 mA.A silver paste was coated on the two surfaces as electrodes and heat-treated at 700℃ for 10 min.The dielectric properties of the ceramic samples were determined at different frequencies by a model DMS-1000 high-temperature dielectric temperature spectroscope(BALAB Tech.Co.,China)with at a ramp rate of 3(°)/min in a temperature range from room temperature to 450℃.The overdamped(200Ω)discharge tests for bulk ceramic samples were performed by a model CFD-005 discharge tester(Gogo(GG)Instruments Technology,China)).Results and discussion The XRD patterns indicate that all the ceramic samples have a perovskite structure without any detectable secondary phase,proving that zirconium ions can completely enter the lattice and form a solid solution.Based on the locally magnified XRD peaks,the XRD peak shape shifts towards lower angles as a whole as the BZ content increases.This indicates that the overall volume of the crystal cell shows an expansion as the Zr ions replace Ti ions due to different ionic radii of Zr and Ti ions.The SEM images show that the grain size gradually increases with increasing the BZ content.The addition of BZ promotes the grain growth.However,this gradually slows down with the increase of content up to x of 0.20.The limited grain size variation appears in the latter two samples.All the samples show a relatively dense morphology.The Curie temperature of the NBT-0.25BT ceramic samples is 256℃,which is similar to the reported results.The Curie temperature decreases gradually with the increase of BZ additive,and the dielectric temperature spectrum flattens out,indicating that the enhanced structural and temperature stability of the NBT-BT-BZ ceramics.The maximum values of all dielectric constants correspond to temperatures that increase with frequency,indicating a dielectric relaxor behavior.A frequency dispersion is accompanied at near the Curie temperature,which can be ascribed to the thermal evolution of the tetragonal polar nanoregions(PNRs)and the mixing effect of the transition from tripartite to tetragonal PNRs.Theγvalues obtained from the experimental data at 100 kHz are 1.79,1.83,1.89,and 1.92 for NBT-BT,NBT-BT-0.08BZ,NBT-BT-0.14BZ,and NBT-BT-0.20BZ,respectively.Theγvalue increases gradually with the addition of the BZ content,showing an enhanced relaxation of the NBT-BT-BZ ceramics.The comparison of discharge current curves and energy density of all the ceramics indicate that the addition of BZ significantly improves the discharge current and energy storage performance.A high discharging energy density(Wd)of 1.6 J·cm^(-3) with a fast discharging speed(τ0.9)of 75 ns is obtained for the ceramic samples with x of 0.14.This can be attributed to an increased relaxation as the BZ content increases.Conclusions NBT-BT-BZ ceramics were prepared by a solid-state reaction method.The XRD patterns revealed a phase transition from a tetragonal phase to a pseudocubic phase as the BZ content increased.The dielectric relaxation behavior of the ceramics could be described by three empirical laws(i.e.,modified Curie-Weiss law,Vogel-Fulcher relation and Lorentz-type empirical law).The dielectric relaxation followed the modified Curie-Weiss law and the Vogel-Fulcher relationship.The parametersγand Ea,which were obtained to evaluate the relaxation behavior,increased at a higher BZ content.The Lorentz-type relationship effectively described the temperature dependence of the dielectric constant on both the low-and high-temperature sides within a specific temperature range for all the ceramics.展开更多
Ferroelectric materials are widely applied in the ferroelectronic devices,photovoltaics,and so on.Ultrathin ferroelectric thin films are highly desired for their applications,which still remain a challenge.In this wor...Ferroelectric materials are widely applied in the ferroelectronic devices,photovoltaics,and so on.Ultrathin ferroelectric thin films are highly desired for their applications,which still remain a challenge.In this work,the ultrathin barium titanate(BaTiO_(3),BTO)films are deposited directly on the fluorine-doped tin oxide glass(SnO_(2):F,FTO)substrates by radio frequency magnetron sputtering method at different temperatures.All BTO ultrathin films exhibit strong ferroelectric properties.Interestingly,BTO thin films deposited at room temperature(RT)also exhibit robust ferroelectricity.The polar domains are switched reversibly with a phase degree of~180°by piezoelectric force microscopy for the BTO thin films deposited at room temperature,attributing to the strain and ion migration.展开更多
Enhancing the activity of photocatalysts is a critical challenge for improving the photocatalytic degradation of contaminated wastewater.Here,a novel Ce single-atom-doped titanate nanotube photocatalyst(CeH_(2)Ti_(2)O...Enhancing the activity of photocatalysts is a critical challenge for improving the photocatalytic degradation of contaminated wastewater.Here,a novel Ce single-atom-doped titanate nanotube photocatalyst(CeH_(2)Ti_(2)O_(5)·H_(2)O)was successfully synthesized using a onepot solvothermal method.Degradation experiments revealed that the optimal Ce doping ratio was 1.0%.The ultraviolet-visible diffuse reflectance spectroscopy results showed that the bandgap of the Ce-doped sample decreased from 3.02 to 2.87 eV,enhancing the absorption in the visible spectral range.At the same time,the BrunauerEmmett-Teller specific surface area increased from 63.68 to 88.95 m^(2)g^(-1).The 1.0%Ce-H_(2)Ti_(2)O_(5)·H_(2)O(HTC_(1))could degrade 99.04%of 100 mg L-1rhodamine B(RhB)after 40 min of visible-light irradiation.The degradation efficiency decreased by only 21.24%after five cycles.The results of free-radical quenching and electron spin resonance spectroscopy analyses indicated that HTC_(1)achieved efficient degradation of RhB through a direct hole oxidation mechanism.Compared with pure protonated titanate nanotubes(H_(2)Ti_(2)O_(5)·H_(2)O),HTC_(1)had a higher specific surface area,more electron traps,narrower bandgap,longer hole lifetime,and suppressed photogenerated charge recombination rate owing to the Ce single-atom doping.展开更多
Smart touch sensing lies at the core of emerging technologies such as wearable electronics,humanmachine interfaces,soft robotics,and interactive surfaces.Triboelectric nanogenerators(TENGs),which convert mechanical st...Smart touch sensing lies at the core of emerging technologies such as wearable electronics,humanmachine interfaces,soft robotics,and interactive surfaces.Triboelectric nanogenerators(TENGs),which convert mechanical stimuli into electrical signals by contact electrification and electrostatic induction,have emerged as promising candidates for such touch-based sensing platforms.Polydimethylsiloxane(PDMS)is widely used in flexible electronics due to its mechanical flexibility,biocompatibility,and dielectric properties.However,its low dielectric constant and charge leakage limit its ability to store and separate charges,reducing the triboelectric performance.To address this challenge,we present a dual-filler reinforcement strategy to significantly boost the triboelectric output of PDMS by incorporating a dielectric filler(barium strontium titanate(BST))and a conductive filler(graphite)into the PDMS matrix.Through this approach,we achieve synergistic effects that significantly improve surface charge density,dielectric constant,and charge trapping capability.Morphological,electrical,and mechanical characterizations demonstrate that the dual-filler approach leads to improved energy harvesting and touch sensing capabilities.This approach paves the way for high-performance,self-powered touch sensors with enhanced durability,making them ideal for applications in biomechanical monitoring and smart touch sensors.展开更多
Alkaline earth-metal titanates ATiO_(3)(A=Ca,Sr,and Ba)with a perovskite-type structure were used as supports for Ru-based catalysts to produce CO_(x)-free H_(2)via NH_(3)decomposition.The effects of alkalineearth met...Alkaline earth-metal titanates ATiO_(3)(A=Ca,Sr,and Ba)with a perovskite-type structure were used as supports for Ru-based catalysts to produce CO_(x)-free H_(2)via NH_(3)decomposition.The effects of alkalineearth metals on the physicochemical characteristics and catalytic activities of Ru/ATiO_(3)for NH_(3)decomposition were investigated using various techniques.The order of Ru/ATiO_(3)for NH_(3)conversion is Ru/BaTiO_(3)>Ru/SrTiO_(3)>Ru/CaTiO_(3)>Ru/TiO_(2)at the identical conditions,with the Ru/BaTiO_(3)catalyst demonstrating the highest NH_(3)conversion of 77.8%at 450℃and a gas hourly space velocity of 30,000 mL/gcat/h,which is 8.7,2.1,and 1.3 times of that over Ru/TiO_(2),Ru/CaTiO_(3),and Ru/SrTiO_(3),respectively.The formation of the ATiO_(3)phase can enrich the concentration of basic sites and oxygen vacancies compared with TiO_(2),which can induce the presence of strong metal-support interaction(SMSI)through the formation of Ru-O-Ti bonds.This SMSI effect increased the dispersion and electron density of Ru nano-particles on ATiO_(3)supports,and the electron-rich Ru nano-particles could weaken the chemisorptive strength of N_(2)and H_(2)on the Ru/ATiO_(3)catalysts,thereby promoting the reaction rate for NH_(3)decomposition.展开更多
This study presents a detailed comparative analysis of three electron transport layer(ETL)materials for perovskite solar cells(PSCs),namely titanium dioxide(TiO_(2)),barium titanate(BaTiO_(3)or BTO),and strontium-dope...This study presents a detailed comparative analysis of three electron transport layer(ETL)materials for perovskite solar cells(PSCs),namely titanium dioxide(TiO_(2)),barium titanate(BaTiO_(3)or BTO),and strontium-doped barium titan-ate(Ba_(1−x)Sr_(x)TiO_(3)or BST),and their impact on the quantum efficiency(QE)and power conversion efficiency(PCE)of CH_(3)NH_(3)PbI_(3)(MAPbI_(3))PSCs.The optimized structure demonstrates that devices utilizing BST as an ETL achieved the highest PCE of 29.85%,exhibiting superior thermal stability with the lowest temperature coefficient of−0.43%/K.This temperature-induced degradation is comparable to that of commercially available silicon cells.Furthermore,BST-based ETLs show 29.50%and 26.48%higher PCE than those of TiO_(2)-based and BTO-based ETLs.The enhanced internal QE and favorable current density–voltage(J–V)characteristics of BST compared with those of TiO_(2)and BTO are attributed to its improved charge carrier separation,reduced recombination rates,and robust electrical characteristics under varied environmental conditions.Furthermore,the electric field and generation rate of the BST-based ETLs show a more favorable distribution than those of the TiO_(2)-based and BTO-based ETLs.These findings provide significant insights into the role of different ETLs in enhancing QE,indicating that BST is a superior ETL that enhances both the efficiency and stability of PSCs.This study contributes to the understanding of how perovskite-structured ETLs can be used to design and optimize highly efficient and stable photovoltaic devices.展开更多
Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were system...Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were systematically investigated.The composite films were characterized by scanning electron microscope(SEM),X-ray diffractometer(XRD),Flourier transform infrared spectroscope(FTIR)and differential scanning calorimeter(DSC).The results show that,surface modified PZT powder(PZT@PDA)is successfully coated by polydopamine(PDA),resulting in a large number of polar groups that interact with the-CF_(2)-groups in PVDF,inducing the generation of polarβphase due to hydrogen bonding formed in the interaction.Theβphase content in composite film increases with increasing PZT@PDA content,up to 28.09%as with 5 wt.%PZT@PDA.PZT@PDA plays a role of nucleating agent to promote the generation of polar phases in the film and also acts as an impurity hindering the growth of nuclei to reduce crystallinity.Moreover,the presence of PZT@PDA in interfaces provides more sites for the occurrence of interfacial polarization and thus improving the electrical properties of films.The composite film with 5 wt.%PZT@PDA possesses the highest dielectric constant(8.61)and residual polarization value(0.6803μC/cm^(2)).展开更多
The progression of anodes has markedly promoted the advancement of lithium-ion batteries(LIBs).Typical LIBs using carbon anodes cannot meet the continuously increasing demands for qualified safety and longevity.Spinel...The progression of anodes has markedly promoted the advancement of lithium-ion batteries(LIBs).Typical LIBs using carbon anodes cannot meet the continuously increasing demands for qualified safety and longevity.Spinel lithium titanate(LTO)is a strong contender to replace graphite anodes due to its optimal zero-strain merit and outstanding structural stability.Nevertheless,low reversible capacity and poor rate performance hinder the widespread application of LTO.Amazingly,the promising pseudocapacitive effect enables LTO to surmount the limit of theoretical capacity via boosted surface Li storage,contributing to observably upgraded energy and power densities in a wide temperature range.By leveraging the synergistic effect of multiple modification strategies to create additional active sites,the pseudocapacitive response of LTO can be markedly enhanced.This paper reviews the progress of pseudocapacitive LTO for the first time.We highlight the zero-strain characteristic and pseudocapacitance mechanism of LTO and review the design strategies of pseudocapacitive LTO.Significative issues for further developing pseudocapacitive LTO are proposed.It is worth noting that the pseudocapacitive contribution can greatly improve the low-temperature electrochemical performances of LTO.We anticipate that more efforts will be aroused to study the advanced pseudocapacitive LTO to accelerate the development of next-generation LIBs and energy storage devices.展开更多
High performance is always the research objective in developing triboelectric nanogenerators(TENGs)for future versatile applications.In this study,flexible triboelectric membranes were prepared based on polyimide(PI)m...High performance is always the research objective in developing triboelectric nanogenerators(TENGs)for future versatile applications.In this study,flexible triboelectric membranes were prepared based on polyimide(PI)membranes doped with barium titanate(BTO)nanoparticles and multi-walled carbon nanotubes(MWCNTs).The piezoelectric BTO nanoparticles were incorporated to boost the electric outputs by the synergistic effect of piezoelectricity and triboelectricity and MWCNTs were incorporated to provide a microcapacitor structure for enhancing the performance of TENGs.When the mass fraction of the BTO nanoparticle was 10%and the mass fraction of the MWCNT was 0.1%,the corresponding TENG achieved optimum electric outputs(an open-circuit voltage of around 65 V,a short-circuit current of about 20.0μA and a transferred charge of about 25.0 nC),much higher than those of the TENG with a single PI membrane.The TENG is potentially used to supply energy for commercial light-emitting diodes and as self-powered sensors to monitor human physical training conditions.This research provides a guideline for developing TENGs with high performance,which is crucial for their long-term use.展开更多
The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO...The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.展开更多
文摘In recent years, two online service giants have emerged in China to dominate their respective industries. Meituan-Dianpinghas maintained a firm hold on the online food delivery sector, while Didi Chuxing retains 90 percent of the country's ride-hailing business, having acquired Uber's China venture back in 2016. Now, however, the two companies have each thrown down the gauntlet, challenging the other for a stake in their main business.
基金国家自然科学基金(12104188,12474095 and 52402323)开放基金(2023KF03,KYCX24-4102)。
文摘Introduction Pure NBT exhibits the frequency-dependent Curie temperature,indicating that its dielectric properties are affected by temperature,measurement frequency,and material processing condition.To enhance the dielectric and relaxor properties of NBT,various dopants such as Sr,K,Li and Bi are incorporated into the NBT structure.These modifications significantly alter the dielectric constant and relaxation behavior,demonstrating a dominant influence of dopant on the material properties.Among these,the solid solution of BaTiO_(3)(BT)with NBT is widely investigated due to its ability to stabilize the perovskite structure and improve dielectric performance.However,the temperature-dependent stability of dielectric properties remains a critical challenge for high-temperature applications.In this study,(1-x)(0.75Na_(0.5)Bi_(0.5)TiO_(3)-0.25BaTiO_(3))-xBaZrO_(3)(NBT-BT-xBZ,x=0,0.08,0.14,and 0.20)ceramics were prepared by a solid-state reaction method.The effect of BaZrO_(3)(BZ)addition on the structural,dielectric,and energy storage properties was systematically investigated.In addition,the phase transition and relaxation behaviors were also analyzed based on the modified Curie-Weiss law,Vogel-Fulcher relation,and Lorentz-type empirical law.Methods The starting materials were powders of high purity Na_(2)CO_(3),Bi_(2)O_(3),TiO_(2),BaCO_(3),and ZrO_(2).The powders were weighed according to a stoichiometric ratio(with 1%excess of Na and Bi)and ground with ethanol in a ball mill at 300 r/min for more than 12 h,and the weight ratio of raw material to ethanol and zirconium balls was 1:1:2.The dried material was heat-treated at 850℃ for 2 h to promote the formation of NBT-BT-BZ.After further grinding for 12 h,the samples were mixed with a small amount of polyvinyl alcohol(PVA).The samples were sintered in air at 1150℃for 2 h and cooled to room temperature.The phase composition of the ceramic samples was determined by an model D8 ADVANDCE X-ray diffractometer(D8 ADVANDCEXRD,Bruker AXS Ltd.,Germany)with Cu target Kαrays,at X-ray wavelengthλof 1.5406Å,2θin the range of 10°to 80°,applied voltage of 40 kV,and a current of 500 mA.A silver paste was coated on the two surfaces as electrodes and heat-treated at 700℃ for 10 min.The dielectric properties of the ceramic samples were determined at different frequencies by a model DMS-1000 high-temperature dielectric temperature spectroscope(BALAB Tech.Co.,China)with at a ramp rate of 3(°)/min in a temperature range from room temperature to 450℃.The overdamped(200Ω)discharge tests for bulk ceramic samples were performed by a model CFD-005 discharge tester(Gogo(GG)Instruments Technology,China)).Results and discussion The XRD patterns indicate that all the ceramic samples have a perovskite structure without any detectable secondary phase,proving that zirconium ions can completely enter the lattice and form a solid solution.Based on the locally magnified XRD peaks,the XRD peak shape shifts towards lower angles as a whole as the BZ content increases.This indicates that the overall volume of the crystal cell shows an expansion as the Zr ions replace Ti ions due to different ionic radii of Zr and Ti ions.The SEM images show that the grain size gradually increases with increasing the BZ content.The addition of BZ promotes the grain growth.However,this gradually slows down with the increase of content up to x of 0.20.The limited grain size variation appears in the latter two samples.All the samples show a relatively dense morphology.The Curie temperature of the NBT-0.25BT ceramic samples is 256℃,which is similar to the reported results.The Curie temperature decreases gradually with the increase of BZ additive,and the dielectric temperature spectrum flattens out,indicating that the enhanced structural and temperature stability of the NBT-BT-BZ ceramics.The maximum values of all dielectric constants correspond to temperatures that increase with frequency,indicating a dielectric relaxor behavior.A frequency dispersion is accompanied at near the Curie temperature,which can be ascribed to the thermal evolution of the tetragonal polar nanoregions(PNRs)and the mixing effect of the transition from tripartite to tetragonal PNRs.Theγvalues obtained from the experimental data at 100 kHz are 1.79,1.83,1.89,and 1.92 for NBT-BT,NBT-BT-0.08BZ,NBT-BT-0.14BZ,and NBT-BT-0.20BZ,respectively.Theγvalue increases gradually with the addition of the BZ content,showing an enhanced relaxation of the NBT-BT-BZ ceramics.The comparison of discharge current curves and energy density of all the ceramics indicate that the addition of BZ significantly improves the discharge current and energy storage performance.A high discharging energy density(Wd)of 1.6 J·cm^(-3) with a fast discharging speed(τ0.9)of 75 ns is obtained for the ceramic samples with x of 0.14.This can be attributed to an increased relaxation as the BZ content increases.Conclusions NBT-BT-BZ ceramics were prepared by a solid-state reaction method.The XRD patterns revealed a phase transition from a tetragonal phase to a pseudocubic phase as the BZ content increased.The dielectric relaxation behavior of the ceramics could be described by three empirical laws(i.e.,modified Curie-Weiss law,Vogel-Fulcher relation and Lorentz-type empirical law).The dielectric relaxation followed the modified Curie-Weiss law and the Vogel-Fulcher relationship.The parametersγand Ea,which were obtained to evaluate the relaxation behavior,increased at a higher BZ content.The Lorentz-type relationship effectively described the temperature dependence of the dielectric constant on both the low-and high-temperature sides within a specific temperature range for all the ceramics.
基金financially supported by the National Key Research and Development Program of China(No.2019YFB1503500)
文摘Ferroelectric materials are widely applied in the ferroelectronic devices,photovoltaics,and so on.Ultrathin ferroelectric thin films are highly desired for their applications,which still remain a challenge.In this work,the ultrathin barium titanate(BaTiO_(3),BTO)films are deposited directly on the fluorine-doped tin oxide glass(SnO_(2):F,FTO)substrates by radio frequency magnetron sputtering method at different temperatures.All BTO ultrathin films exhibit strong ferroelectric properties.Interestingly,BTO thin films deposited at room temperature(RT)also exhibit robust ferroelectricity.The polar domains are switched reversibly with a phase degree of~180°by piezoelectric force microscopy for the BTO thin films deposited at room temperature,attributing to the strain and ion migration.
基金financially supported by the National Key Technology R&D Program of China(No.2021YFB3500801)
文摘Enhancing the activity of photocatalysts is a critical challenge for improving the photocatalytic degradation of contaminated wastewater.Here,a novel Ce single-atom-doped titanate nanotube photocatalyst(CeH_(2)Ti_(2)O_(5)·H_(2)O)was successfully synthesized using a onepot solvothermal method.Degradation experiments revealed that the optimal Ce doping ratio was 1.0%.The ultraviolet-visible diffuse reflectance spectroscopy results showed that the bandgap of the Ce-doped sample decreased from 3.02 to 2.87 eV,enhancing the absorption in the visible spectral range.At the same time,the BrunauerEmmett-Teller specific surface area increased from 63.68 to 88.95 m^(2)g^(-1).The 1.0%Ce-H_(2)Ti_(2)O_(5)·H_(2)O(HTC_(1))could degrade 99.04%of 100 mg L-1rhodamine B(RhB)after 40 min of visible-light irradiation.The degradation efficiency decreased by only 21.24%after five cycles.The results of free-radical quenching and electron spin resonance spectroscopy analyses indicated that HTC_(1)achieved efficient degradation of RhB through a direct hole oxidation mechanism.Compared with pure protonated titanate nanotubes(H_(2)Ti_(2)O_(5)·H_(2)O),HTC_(1)had a higher specific surface area,more electron traps,narrower bandgap,longer hole lifetime,and suppressed photogenerated charge recombination rate owing to the Ce single-atom doping.
基金supported by the Post.-Doc.Scholarship Program of Korea University of Technology and Education(KOREATECH)。
文摘Smart touch sensing lies at the core of emerging technologies such as wearable electronics,humanmachine interfaces,soft robotics,and interactive surfaces.Triboelectric nanogenerators(TENGs),which convert mechanical stimuli into electrical signals by contact electrification and electrostatic induction,have emerged as promising candidates for such touch-based sensing platforms.Polydimethylsiloxane(PDMS)is widely used in flexible electronics due to its mechanical flexibility,biocompatibility,and dielectric properties.However,its low dielectric constant and charge leakage limit its ability to store and separate charges,reducing the triboelectric performance.To address this challenge,we present a dual-filler reinforcement strategy to significantly boost the triboelectric output of PDMS by incorporating a dielectric filler(barium strontium titanate(BST))and a conductive filler(graphite)into the PDMS matrix.Through this approach,we achieve synergistic effects that significantly improve surface charge density,dielectric constant,and charge trapping capability.Morphological,electrical,and mechanical characterizations demonstrate that the dual-filler approach leads to improved energy harvesting and touch sensing capabilities.This approach paves the way for high-performance,self-powered touch sensors with enhanced durability,making them ideal for applications in biomechanical monitoring and smart touch sensors.
基金financially supported by the National Natural Science Foundation of China(21968028)the Xinjiang Tianchi Talent Project(CZ002732)。
文摘Alkaline earth-metal titanates ATiO_(3)(A=Ca,Sr,and Ba)with a perovskite-type structure were used as supports for Ru-based catalysts to produce CO_(x)-free H_(2)via NH_(3)decomposition.The effects of alkalineearth metals on the physicochemical characteristics and catalytic activities of Ru/ATiO_(3)for NH_(3)decomposition were investigated using various techniques.The order of Ru/ATiO_(3)for NH_(3)conversion is Ru/BaTiO_(3)>Ru/SrTiO_(3)>Ru/CaTiO_(3)>Ru/TiO_(2)at the identical conditions,with the Ru/BaTiO_(3)catalyst demonstrating the highest NH_(3)conversion of 77.8%at 450℃and a gas hourly space velocity of 30,000 mL/gcat/h,which is 8.7,2.1,and 1.3 times of that over Ru/TiO_(2),Ru/CaTiO_(3),and Ru/SrTiO_(3),respectively.The formation of the ATiO_(3)phase can enrich the concentration of basic sites and oxygen vacancies compared with TiO_(2),which can induce the presence of strong metal-support interaction(SMSI)through the formation of Ru-O-Ti bonds.This SMSI effect increased the dispersion and electron density of Ru nano-particles on ATiO_(3)supports,and the electron-rich Ru nano-particles could weaken the chemisorptive strength of N_(2)and H_(2)on the Ru/ATiO_(3)catalysts,thereby promoting the reaction rate for NH_(3)decomposition.
基金funded by the Geran Universiti Penyelidikan(GUP),under the grant number GUP-2022-011 funded by the Universiti Kebangsaan Malaysia。
文摘This study presents a detailed comparative analysis of three electron transport layer(ETL)materials for perovskite solar cells(PSCs),namely titanium dioxide(TiO_(2)),barium titanate(BaTiO_(3)or BTO),and strontium-doped barium titan-ate(Ba_(1−x)Sr_(x)TiO_(3)or BST),and their impact on the quantum efficiency(QE)and power conversion efficiency(PCE)of CH_(3)NH_(3)PbI_(3)(MAPbI_(3))PSCs.The optimized structure demonstrates that devices utilizing BST as an ETL achieved the highest PCE of 29.85%,exhibiting superior thermal stability with the lowest temperature coefficient of−0.43%/K.This temperature-induced degradation is comparable to that of commercially available silicon cells.Furthermore,BST-based ETLs show 29.50%and 26.48%higher PCE than those of TiO_(2)-based and BTO-based ETLs.The enhanced internal QE and favorable current density–voltage(J–V)characteristics of BST compared with those of TiO_(2)and BTO are attributed to its improved charge carrier separation,reduced recombination rates,and robust electrical characteristics under varied environmental conditions.Furthermore,the electric field and generation rate of the BST-based ETLs show a more favorable distribution than those of the TiO_(2)-based and BTO-based ETLs.These findings provide significant insights into the role of different ETLs in enhancing QE,indicating that BST is a superior ETL that enhances both the efficiency and stability of PSCs.This study contributes to the understanding of how perovskite-structured ETLs can be used to design and optimize highly efficient and stable photovoltaic devices.
基金Project(22020JJ4729)supported by the Natural Science Foundation of Hunan Province,China。
文摘Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were systematically investigated.The composite films were characterized by scanning electron microscope(SEM),X-ray diffractometer(XRD),Flourier transform infrared spectroscope(FTIR)and differential scanning calorimeter(DSC).The results show that,surface modified PZT powder(PZT@PDA)is successfully coated by polydopamine(PDA),resulting in a large number of polar groups that interact with the-CF_(2)-groups in PVDF,inducing the generation of polarβphase due to hydrogen bonding formed in the interaction.Theβphase content in composite film increases with increasing PZT@PDA content,up to 28.09%as with 5 wt.%PZT@PDA.PZT@PDA plays a role of nucleating agent to promote the generation of polar phases in the film and also acts as an impurity hindering the growth of nuclei to reduce crystallinity.Moreover,the presence of PZT@PDA in interfaces provides more sites for the occurrence of interfacial polarization and thus improving the electrical properties of films.The composite film with 5 wt.%PZT@PDA possesses the highest dielectric constant(8.61)and residual polarization value(0.6803μC/cm^(2)).
基金financially supported by the National Natural Science Foundation of China(51108455,52106264)Civil Aviation Safety Capacity Building Fund(ADSA2022026)+2 种基金Liaoning Revitalization Talents Program(XLYC2018013)Liaoning Province AppliedFoundation Research Program Project(2023JH2/101300215)Unveiled the List of Local Service Projects from Education Department of Liaoning Province(JYTMS20230227)。
文摘The progression of anodes has markedly promoted the advancement of lithium-ion batteries(LIBs).Typical LIBs using carbon anodes cannot meet the continuously increasing demands for qualified safety and longevity.Spinel lithium titanate(LTO)is a strong contender to replace graphite anodes due to its optimal zero-strain merit and outstanding structural stability.Nevertheless,low reversible capacity and poor rate performance hinder the widespread application of LTO.Amazingly,the promising pseudocapacitive effect enables LTO to surmount the limit of theoretical capacity via boosted surface Li storage,contributing to observably upgraded energy and power densities in a wide temperature range.By leveraging the synergistic effect of multiple modification strategies to create additional active sites,the pseudocapacitive response of LTO can be markedly enhanced.This paper reviews the progress of pseudocapacitive LTO for the first time.We highlight the zero-strain characteristic and pseudocapacitance mechanism of LTO and review the design strategies of pseudocapacitive LTO.Significative issues for further developing pseudocapacitive LTO are proposed.It is worth noting that the pseudocapacitive contribution can greatly improve the low-temperature electrochemical performances of LTO.We anticipate that more efforts will be aroused to study the advanced pseudocapacitive LTO to accelerate the development of next-generation LIBs and energy storage devices.
基金National Natural Science Foundation of China(No.52103267)。
文摘High performance is always the research objective in developing triboelectric nanogenerators(TENGs)for future versatile applications.In this study,flexible triboelectric membranes were prepared based on polyimide(PI)membranes doped with barium titanate(BTO)nanoparticles and multi-walled carbon nanotubes(MWCNTs).The piezoelectric BTO nanoparticles were incorporated to boost the electric outputs by the synergistic effect of piezoelectricity and triboelectricity and MWCNTs were incorporated to provide a microcapacitor structure for enhancing the performance of TENGs.When the mass fraction of the BTO nanoparticle was 10%and the mass fraction of the MWCNT was 0.1%,the corresponding TENG achieved optimum electric outputs(an open-circuit voltage of around 65 V,a short-circuit current of about 20.0μA and a transferred charge of about 25.0 nC),much higher than those of the TENG with a single PI membrane.The TENG is potentially used to supply energy for commercial light-emitting diodes and as self-powered sensors to monitor human physical training conditions.This research provides a guideline for developing TENGs with high performance,which is crucial for their long-term use.
基金Project(2009BAE80B01) supported by the Key Projects in the National Science and Technology Pillar Program During the11th Five-Year Plan Period,China
文摘The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.