This work was focused on study of anti-infection ability and its underlying mechanism of a novel dental implant made of titanium-copper(TiCu)alloy.In general,most studies on antibacterial implants have used a single p...This work was focused on study of anti-infection ability and its underlying mechanism of a novel dental implant made of titanium-copper(TiCu)alloy.In general,most studies on antibacterial implants have used a single pathogen to test their anti-infection ability using infectious animal models.However,dental implant-associated infections are polymicrobial diseases.We innovatively combine the classic ligature model in dogs with sucrose-rich diets to induce oral infections via the canine native oral bacteria.The anti-infection ability,biocompatibility and underlying mechanism of TiCu implant were systematically investigated in comparison with pure Ti implant via general inspection,hematology,imageology(micro-CT),microbiology(16S rDNA and metagenome),histology,and Cu ion detections.Compared with Ti implant,TiCu implant demonstrated remarkable anti-infection potentials with excellent biocompatibility.Additionally,the underlying anti-infection mechanism of TiCu implant was considered to involve maintaining the oral microbiota homeostasis.It was found that the carbohydrates in the plaques formed on the surface of TiCu implant were metabolized through the tricarboxylic acid cycle(TCA)cycles,which prevented the formation of an acidic microenvironment and inhibited the accumulation of acidogens and pathogens,thereby maintaining the microflora balance between aerobic and anaerobic bacteria.展开更多
由于存在大的温度梯度,激光熔化沉积过程会沿沉积方向形成具有择优取向的粗大柱状晶,导致材料产生显著的各向异性。拟通过在钛合金中添加Cu以实现改变初生β晶粒形态、细化组织并弱化织构的目的。系统研究了不同含量的Cu添加对激光熔化...由于存在大的温度梯度,激光熔化沉积过程会沿沉积方向形成具有择优取向的粗大柱状晶,导致材料产生显著的各向异性。拟通过在钛合金中添加Cu以实现改变初生β晶粒形态、细化组织并弱化织构的目的。系统研究了不同含量的Cu添加对激光熔化沉积TC4钛合金组织及织构的影响,结果表明,Cu元素能够显著细化柱状初生β晶粒,并使晶粒尺寸分布更加均匀,Cu元素添加量为4%(质量分数,下同)时能够实现完全的柱状晶向等轴晶转变,平均晶粒尺寸由未添加时的1490μm降低到385μm。添加Cu试样的晶粒内部仍为网篮组织,主要由α-Ti、β-Ti和少量Ti2Cu相组成,其中Ti2Cu呈短棒状分布在α-Ti板条的边界处,其在组织中的占比随Cu添加量的增大而增加。当添加8%Cu时,α-Ti的平均宽度为0.44μm,与未添加Cu试样的1.18μm相比降低了约63%。Cu添加能够显著降低激光熔化沉积钛合金的织构强度,当添加4%Cu时,α-Ti极图均匀分布倍数(multiples of uniform distribution,MUD)的最大值相比TC4降低了约71%。展开更多
Antibacterial Ti-5Cu alloy is a promising substitute material for Ti-made cardiovascular implants,so its surface engineering is crucial to expediting clinical implementation.Given the antibacterial and cardiovas-cular...Antibacterial Ti-5Cu alloy is a promising substitute material for Ti-made cardiovascular implants,so its surface engineering is crucial to expediting clinical implementation.Given the antibacterial and cardiovas-cular biological benefits of Cu^(2+)and titanium-nitride-oxide(TiN x O y)coatings,a Cu_(2)O/CuO-TiN x O y coating with upregulated Cu^(2+)release was successfully deposited on Ti-5Cu alloy for the first time using oxygen and nitrogen plasma-based surface modification.The superhydrophilic and nanostructured Cu_(2)O/CuO-TiN x O y coating had a dense structure and was well bonded to the substrate,resulting in enhanced cor-rosion resistance,while CuO/Cu_(2)O in the coating released Cu^(2+)faster than Ti_(2)Cu phase in the matrix.More gratifying,the coating demonstrated perfect antibacterial properties(R>99.9%against S.aureus),owing primarily to direct contact sterilization of Cu_(2)O/CuO.The most encouraging phenomenon was that the coating dramatically accelerated HUVEC adhesion(1.4 times),proliferation(RGR:106%-116%),and particularly migration(RMR:158%-247%)compared with the control Ti.The coating extract also signifi-cantly stimulated in vitro angiogenesis capacity.The rapid endothelialization for Cu_(2)O/CuO-TiN x O y coating was attributed to the surface nanostructure and Cu^(2+)/NO_(2)−release,which upregulated the angiogenesis-related gene expression of HIF-1α,VEGF,and eNOS to increase VEGF secretion and NO production.All of the findings indicated that the Cu_(2)O/CuO-TiN x O y coating could enhance the corrosion resistance,an-tibacterial properties,and endothelialization potential of Ti-Cu alloy,displaying great clinical potential in cardiovascular applications.展开更多
基金supported by the Bureau of International Cooperation,Chinese Academy of Sciences[174321KYSB20180006]National Key Research and Development Program of China[2018YFC1106600,2016YFC1100600]+1 种基金Natural Science Foundation of China[51631009,31870954]Liaoning Revitalization Talents Program[XLYC1807069].
文摘This work was focused on study of anti-infection ability and its underlying mechanism of a novel dental implant made of titanium-copper(TiCu)alloy.In general,most studies on antibacterial implants have used a single pathogen to test their anti-infection ability using infectious animal models.However,dental implant-associated infections are polymicrobial diseases.We innovatively combine the classic ligature model in dogs with sucrose-rich diets to induce oral infections via the canine native oral bacteria.The anti-infection ability,biocompatibility and underlying mechanism of TiCu implant were systematically investigated in comparison with pure Ti implant via general inspection,hematology,imageology(micro-CT),microbiology(16S rDNA and metagenome),histology,and Cu ion detections.Compared with Ti implant,TiCu implant demonstrated remarkable anti-infection potentials with excellent biocompatibility.Additionally,the underlying anti-infection mechanism of TiCu implant was considered to involve maintaining the oral microbiota homeostasis.It was found that the carbohydrates in the plaques formed on the surface of TiCu implant were metabolized through the tricarboxylic acid cycle(TCA)cycles,which prevented the formation of an acidic microenvironment and inhibited the accumulation of acidogens and pathogens,thereby maintaining the microflora balance between aerobic and anaerobic bacteria.
文摘由于存在大的温度梯度,激光熔化沉积过程会沿沉积方向形成具有择优取向的粗大柱状晶,导致材料产生显著的各向异性。拟通过在钛合金中添加Cu以实现改变初生β晶粒形态、细化组织并弱化织构的目的。系统研究了不同含量的Cu添加对激光熔化沉积TC4钛合金组织及织构的影响,结果表明,Cu元素能够显著细化柱状初生β晶粒,并使晶粒尺寸分布更加均匀,Cu元素添加量为4%(质量分数,下同)时能够实现完全的柱状晶向等轴晶转变,平均晶粒尺寸由未添加时的1490μm降低到385μm。添加Cu试样的晶粒内部仍为网篮组织,主要由α-Ti、β-Ti和少量Ti2Cu相组成,其中Ti2Cu呈短棒状分布在α-Ti板条的边界处,其在组织中的占比随Cu添加量的增大而增加。当添加8%Cu时,α-Ti的平均宽度为0.44μm,与未添加Cu试样的1.18μm相比降低了约63%。Cu添加能够显著降低激光熔化沉积钛合金的织构强度,当添加4%Cu时,α-Ti极图均匀分布倍数(multiples of uniform distribution,MUD)的最大值相比TC4降低了约71%。
基金supported by the National Key R&D Program of China(No.2022YFB3804400)and(No.2022YFE0122800)Research Program(No.62602010113)+1 种基金Na-tional Natural Science Foundation of China(No.31971253/C1002)Beijing Municipal Health Commission(Nos.BMHC-2021-6,BMHC-2019-9,PXM 2020_026275_000002).
文摘Antibacterial Ti-5Cu alloy is a promising substitute material for Ti-made cardiovascular implants,so its surface engineering is crucial to expediting clinical implementation.Given the antibacterial and cardiovas-cular biological benefits of Cu^(2+)and titanium-nitride-oxide(TiN x O y)coatings,a Cu_(2)O/CuO-TiN x O y coating with upregulated Cu^(2+)release was successfully deposited on Ti-5Cu alloy for the first time using oxygen and nitrogen plasma-based surface modification.The superhydrophilic and nanostructured Cu_(2)O/CuO-TiN x O y coating had a dense structure and was well bonded to the substrate,resulting in enhanced cor-rosion resistance,while CuO/Cu_(2)O in the coating released Cu^(2+)faster than Ti_(2)Cu phase in the matrix.More gratifying,the coating demonstrated perfect antibacterial properties(R>99.9%against S.aureus),owing primarily to direct contact sterilization of Cu_(2)O/CuO.The most encouraging phenomenon was that the coating dramatically accelerated HUVEC adhesion(1.4 times),proliferation(RGR:106%-116%),and particularly migration(RMR:158%-247%)compared with the control Ti.The coating extract also signifi-cantly stimulated in vitro angiogenesis capacity.The rapid endothelialization for Cu_(2)O/CuO-TiN x O y coating was attributed to the surface nanostructure and Cu^(2+)/NO_(2)−release,which upregulated the angiogenesis-related gene expression of HIF-1α,VEGF,and eNOS to increase VEGF secretion and NO production.All of the findings indicated that the Cu_(2)O/CuO-TiN x O y coating could enhance the corrosion resistance,an-tibacterial properties,and endothelialization potential of Ti-Cu alloy,displaying great clinical potential in cardiovascular applications.