Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central ne...Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.展开更多
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays a...The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.展开更多
The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the...The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries.展开更多
As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven si...As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven size distribution.Through electron backscattered diffraction(EBSD),the forged microstructure at various locations of as-forged WSTi6421 titanium alloy billet was analyzed,revealing that the strength of theβphase cubic texture generated by forging significantly influences the grain size afterβannealing.Heat treatment experiments were conducted within the temperature range from T_(β)−50°C to T_(β)+10°C to observe the macro-and micro-morphologies.Results show that the cubic texture ofβphase caused by forging impacts the texture of the secondaryαphase,which subsequently influences theβphase formed during the post-βannealing process.Moreover,the pinning effect of the residual primaryαphase plays a crucial role in the growth ofβgrains during theβannealing process.EBSD analysis results suggest that the strength ofβphase with cubic texture formed during forging process impacts the orientation distribution differences ofβgrains afterβannealing.Additionally,the development of grains with large orientations within the cubic texture shows a certain degree of selectivity duringβannealing,which is affected by various factors,including the pinning effect of the primaryαphase,the strength of the matrix cubic texture,and the orientation relationship betweenβgrain and matrix.Comprehensively,the stronger the texture in a certain region,the less likely the large misoriented grains suffering secondary growth,thereby aggregating the difference in microstructure and grain orientation distribution across different regions afterβannealing.展开更多
The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and med...The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.展开更多
Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other...Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.展开更多
Sodium-ion batteries(SIBs)hold great promise for large-scale energy storage in the post-lithium-ion battery era due to their high rate performance and long lifespan,although their sluggish Na^(+) transformation kineti...Sodium-ion batteries(SIBs)hold great promise for large-scale energy storage in the post-lithium-ion battery era due to their high rate performance and long lifespan,although their sluggish Na^(+) transformation kinetics still require improvement.Encouraged by the excellent electrochemical performance of titanium-based anode materials,here,we present a novel titanium vanadate@carbon(TVO@C)material as anode for SIBs.Our TVO@C material is synthesized via a facile coprecipitation method,with the following annealing process in an acetylene atomosphere.The opened ion channel and the oxygen vacancies within TVO@C facilitate the diffusion of Na^(+) ions,reducing their diffusion barrier.Thus,an ultrahigh rate of 100 A g^(-1)and long life of 10,000 cycles have been achieved.Furthermore,the TVO@C electrode exhibits stable performance,not only at room temperature,but also at temperatures as low as 20 C.The TVO@CjjNa_(3)V_(2)(PO_(4))_(3)@C full cells have also achieved stable discharge/charge for 500 cycles.It is believed that this strategy provides new insight into the development of advanced electrodes and provides a new opportunity for constructing novel high rate electrodes.展开更多
Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is...Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.展开更多
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ...Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.展开更多
Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across...Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across the copper mining,beneficiation,and smelting processes using a life-cycle approach,providing important insights for arsenic pollution prevention and the resource utilization of arsenic-bearing solid waste.The results show that the amount of As in waste rock,tailing and concentrate are 53483 t,86632 t,76162 t,respectively.After smelting treatment,the amount of arsenic in different types of solid waste,wastewater,waste gas and products are 76128 t,1 t,31 t and 2 t,respectively,and the proportion in arsenic sulfide slag is the highest(55%).The amount of emission to the environment is 32 t,accounting for only 0.04%of total amount.In the future,key considerations are to improve the resource utilization rate of arsenic-containing solid waste(tailing,smelting slag),especially arsenic sulfide slag,and to digest its environmental risk.展开更多
Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of L...Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest...In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.展开更多
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli...Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.展开更多
Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching a...Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching and dynamic quenching effects of ornidazole(ONZ)on BSA-Gly CuNCs,a simple and sensitive detection method for ONZ was successfully developed.The experimental results demonstrate that the addition of the small molecule Gly can more effectively protect CuNCs,and thus enhance its fluorescence intensity and stability.The proposed assay allowed for the detection of ONZ in a linear range of 0.28 to 52.60μmol·L^(-1)and a detection limit of 0.069μmol·L^(-1).Compared with the single-ligand-modified CuNCs,dual-ligand-modified BSA-Gly CuNCs had higher fluorescence intensity,stability,and sensing ability and were successfully applied to evaluate ONZ in actual ONZ tablets.展开更多
Herein,copper nanoclusters(Cu NCs)were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand,with Cu(NO_(3))_(2)as copper source.Subse-quen...Herein,copper nanoclusters(Cu NCs)were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand,with Cu(NO_(3))_(2)as copper source.Subse-quently,composite fluorescent nanoparticles,chitosan-functionalized silica nanoparticles(CSNPs)-coated Cu NCs(Cu NCs/CSNPs),were synthesized via a reverse microemulsion method.Compared with Cu NCs,the composite Cu NCs/CSNPs exhibited an increased quantum yield and enhanced fluorescence sensing performance.Based on the composite Cu NCs/CSNPs,a fluorescence method for the detection of cefixime fluorescence quenching was estab-lished.The technique was simple,sensitive,and selective for detecting cefixime.The fluorescence quenching effi-ciency of Cu NCs/CSNPs was linearly related to the concentration of cefixime in the range of 3.98-38.5µmol·L^(-1)(1.81-17.46 mg·L^(-1)),with a limit of detection of 0.0455µmol·L^(-1)(20.6µg·L^(-1)).展开更多
CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesi...CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesis process.Results show that CuS-C50 has the complete nanoflower structure.In aluminum chloride-pentamethylcydopentodiene/tetrahydrofuran(APC/THF)electrolyte,the CuS-C50 exhibits a high specific capacity of 331.19 mAh/g when the current density is 50 mA/g and still keeps a specific capacity of 136.92 mAh/g over 50 cycles when the current density is 200 mA/g.Results of morphology characterizations indicate that the complete nanoflower structure can provide more active sites and reduce the barriers for Mg^(2+)movement,eventually improving the charge and discharge performance of the CuS cathode materials for magnesium ion batteries.展开更多
The hot deformation behavior of electrolytic copper was investigated using a Gleeble-3500 thermal simulation testing machine at temperatures ranging from 500℃ to 800℃ and strain rates ranging from 0.01 s^(-1) to 10 ...The hot deformation behavior of electrolytic copper was investigated using a Gleeble-3500 thermal simulation testing machine at temperatures ranging from 500℃ to 800℃ and strain rates ranging from 0.01 s^(-1) to 10 s^(-1),under 70% deformation conditions.The true stress-true strain curves were analyzed and a constitutive equation was established at a strain of 0.5.Based on the dynamic material model proposed by Prasad,processing maps were developed under different strain conditions.Microstructure of compressed sample was observed by electron backscatter diffraction.The results reveal that the electrolytic copper demonstrates high sensitivity to deformation temperature and strain rate during high-temperature plastic deformation.The flow stress decreases gradually with raising the temperature and reducing the strain rate.According to the established processing map,the optimal processing conditions are determined as follows:deformation temperatures of 600-650℃ and strain rates of 5-10 s^(-1).Discontinuous dynamic recrystallization of electrolytic copper occurs during high-temperature plastic deformation,and the grains are significantly refined at low temperature and high strain rate conditions.展开更多
Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics...Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized.展开更多
The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the...The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.展开更多
文摘Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
文摘The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
基金China Scholarship Council,Grant/Award Number:201806950083Advanced Materials research program of the Zernike National Research CentreFaculty of Science and Engineering(FSE),University of Groningen。
文摘The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries.
基金Key Research and Development Plan of Shaanxi Province(2023-YBGY-493)。
文摘As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven size distribution.Through electron backscattered diffraction(EBSD),the forged microstructure at various locations of as-forged WSTi6421 titanium alloy billet was analyzed,revealing that the strength of theβphase cubic texture generated by forging significantly influences the grain size afterβannealing.Heat treatment experiments were conducted within the temperature range from T_(β)−50°C to T_(β)+10°C to observe the macro-and micro-morphologies.Results show that the cubic texture ofβphase caused by forging impacts the texture of the secondaryαphase,which subsequently influences theβphase formed during the post-βannealing process.Moreover,the pinning effect of the residual primaryαphase plays a crucial role in the growth ofβgrains during theβannealing process.EBSD analysis results suggest that the strength ofβphase with cubic texture formed during forging process impacts the orientation distribution differences ofβgrains afterβannealing.Additionally,the development of grains with large orientations within the cubic texture shows a certain degree of selectivity duringβannealing,which is affected by various factors,including the pinning effect of the primaryαphase,the strength of the matrix cubic texture,and the orientation relationship betweenβgrain and matrix.Comprehensively,the stronger the texture in a certain region,the less likely the large misoriented grains suffering secondary growth,thereby aggregating the difference in microstructure and grain orientation distribution across different regions afterβannealing.
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(No.P2023-B-IV-003-001)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Huaqiao University Engineering Research Center of Brittle Materials Machining(MOE,2023IME-001)。
文摘The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.
基金financially supported by the Key Research and Development Program of Ningbo(Grant No.2023Z098)Natural Science Foundation of Inner Mongolia(Grant No.2023MS05040)+1 种基金Shenyang Collaborative Innovation Center Project for Multiple Energy Fields Composite Processing of Special Materials(Grant No.JG210027)Shenyang Key Technology Special Project of The Open Competition Mechanism to Select the Best Solution(Grant Nos.2022210101000827,2022-0-43-048).
文摘Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.
基金supported by National Nature Science Foundation of China(22105118)Nature Science Foundation of Shandong Provinces(ZR2021QB095)China Postdoctoral Science Foundation(2020TQ0183 and 2021M701979).
文摘Sodium-ion batteries(SIBs)hold great promise for large-scale energy storage in the post-lithium-ion battery era due to their high rate performance and long lifespan,although their sluggish Na^(+) transformation kinetics still require improvement.Encouraged by the excellent electrochemical performance of titanium-based anode materials,here,we present a novel titanium vanadate@carbon(TVO@C)material as anode for SIBs.Our TVO@C material is synthesized via a facile coprecipitation method,with the following annealing process in an acetylene atomosphere.The opened ion channel and the oxygen vacancies within TVO@C facilitate the diffusion of Na^(+) ions,reducing their diffusion barrier.Thus,an ultrahigh rate of 100 A g^(-1)and long life of 10,000 cycles have been achieved.Furthermore,the TVO@C electrode exhibits stable performance,not only at room temperature,but also at temperatures as low as 20 C.The TVO@CjjNa_(3)V_(2)(PO_(4))_(3)@C full cells have also achieved stable discharge/charge for 500 cycles.It is believed that this strategy provides new insight into the development of advanced electrodes and provides a new opportunity for constructing novel high rate electrodes.
基金supported by the Notional Natural Science Foundation of Chino,No.82160690Colloborotive Innovation Center of Chinese Ministry of Education,No.2020-39Science and Technology Foundation of Guizhou Province,No.ZK[2021]-014(all to FZ)。
文摘Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
基金supported by the National Key R&D Plan of China(No.2022YFB3705603)the National Natural Science Foundation of China(No.52101046)+1 种基金the Excellent Youth Overseas Project of National Science and Natural Foundation of China,the Baowu Special Metallurgy Cooperation Limited(No.22H010101336)the Medicine-Engineering Interdisciplinary Project of Shanghai Jiao Tong University(No.YG2022QN076).
文摘Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.
文摘Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across the copper mining,beneficiation,and smelting processes using a life-cycle approach,providing important insights for arsenic pollution prevention and the resource utilization of arsenic-bearing solid waste.The results show that the amount of As in waste rock,tailing and concentrate are 53483 t,86632 t,76162 t,respectively.After smelting treatment,the amount of arsenic in different types of solid waste,wastewater,waste gas and products are 76128 t,1 t,31 t and 2 t,respectively,and the proportion in arsenic sulfide slag is the highest(55%).The amount of emission to the environment is 32 t,accounting for only 0.04%of total amount.In the future,key considerations are to improve the resource utilization rate of arsenic-containing solid waste(tailing,smelting slag),especially arsenic sulfide slag,and to digest its environmental risk.
基金supported by the National Key R&D Plan Program of China(No.2021YFB3400800)Henan Key Research and Development Program(No.231111241000)+1 种基金the Joint Fund of Henan Province Science and Technology R&D Program(No.225200810026)Zhongyuan Scholar Workstation Funded Program(No.224400510025).
文摘Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
文摘In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.
基金the W.M.Keck Center for Nano-Scale Imaging in the Department of Chemistry and Biochemistry at the University of Arizona(Grant No.RRID:SCR_022884),with funding from the W.M.Keck Foundation Grant.
文摘Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.
文摘Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching and dynamic quenching effects of ornidazole(ONZ)on BSA-Gly CuNCs,a simple and sensitive detection method for ONZ was successfully developed.The experimental results demonstrate that the addition of the small molecule Gly can more effectively protect CuNCs,and thus enhance its fluorescence intensity and stability.The proposed assay allowed for the detection of ONZ in a linear range of 0.28 to 52.60μmol·L^(-1)and a detection limit of 0.069μmol·L^(-1).Compared with the single-ligand-modified CuNCs,dual-ligand-modified BSA-Gly CuNCs had higher fluorescence intensity,stability,and sensing ability and were successfully applied to evaluate ONZ in actual ONZ tablets.
文摘Herein,copper nanoclusters(Cu NCs)were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand,with Cu(NO_(3))_(2)as copper source.Subse-quently,composite fluorescent nanoparticles,chitosan-functionalized silica nanoparticles(CSNPs)-coated Cu NCs(Cu NCs/CSNPs),were synthesized via a reverse microemulsion method.Compared with Cu NCs,the composite Cu NCs/CSNPs exhibited an increased quantum yield and enhanced fluorescence sensing performance.Based on the composite Cu NCs/CSNPs,a fluorescence method for the detection of cefixime fluorescence quenching was estab-lished.The technique was simple,sensitive,and selective for detecting cefixime.The fluorescence quenching effi-ciency of Cu NCs/CSNPs was linearly related to the concentration of cefixime in the range of 3.98-38.5µmol·L^(-1)(1.81-17.46 mg·L^(-1)),with a limit of detection of 0.0455µmol·L^(-1)(20.6µg·L^(-1)).
基金National Natural Science Foundation of China(52171101)Fundamental Research Funds for the Central Universities(2024IAIS-QN009)National Key R&D Program of China(2021YFB3701100)。
文摘CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesis process.Results show that CuS-C50 has the complete nanoflower structure.In aluminum chloride-pentamethylcydopentodiene/tetrahydrofuran(APC/THF)electrolyte,the CuS-C50 exhibits a high specific capacity of 331.19 mAh/g when the current density is 50 mA/g and still keeps a specific capacity of 136.92 mAh/g over 50 cycles when the current density is 200 mA/g.Results of morphology characterizations indicate that the complete nanoflower structure can provide more active sites and reduce the barriers for Mg^(2+)movement,eventually improving the charge and discharge performance of the CuS cathode materials for magnesium ion batteries.
基金Gansu Province Higher Education Institutions Industrial Support Program Project(2022CYZC-19)Gansu Provincial Science and Technology Major Project(22ZD6GA008)。
文摘The hot deformation behavior of electrolytic copper was investigated using a Gleeble-3500 thermal simulation testing machine at temperatures ranging from 500℃ to 800℃ and strain rates ranging from 0.01 s^(-1) to 10 s^(-1),under 70% deformation conditions.The true stress-true strain curves were analyzed and a constitutive equation was established at a strain of 0.5.Based on the dynamic material model proposed by Prasad,processing maps were developed under different strain conditions.Microstructure of compressed sample was observed by electron backscatter diffraction.The results reveal that the electrolytic copper demonstrates high sensitivity to deformation temperature and strain rate during high-temperature plastic deformation.The flow stress decreases gradually with raising the temperature and reducing the strain rate.According to the established processing map,the optimal processing conditions are determined as follows:deformation temperatures of 600-650℃ and strain rates of 5-10 s^(-1).Discontinuous dynamic recrystallization of electrolytic copper occurs during high-temperature plastic deformation,and the grains are significantly refined at low temperature and high strain rate conditions.
基金National Natural Science Foundation of China(52171114)。
文摘Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized.
基金National Natural Science Foundation of China(52375378)National Key Laboratory of Metal Forming Technology and Heavy Equipment(S2308100.W12)Huxiang High-Level Talent Gathering Project of Hunan Province(2021RC5001)。
文摘The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.