With TiCl4/MgCl2(Ti)and Al(i-Bu)3(Al)as catalysts,the thermoplastic copolymer of 1-butene(Bt)and 1-hexene(He)was synthesized successfully.The effects of Bt/He,Ti/(He+Bt),Al/Ti,temperature and reaction time on conversi...With TiCl4/MgCl2(Ti)and Al(i-Bu)3(Al)as catalysts,the thermoplastic copolymer of 1-butene(Bt)and 1-hexene(He)was synthesized successfully.The effects of Bt/He,Ti/(He+Bt),Al/Ti,temperature and reaction time on conversion,catalyst efficiency(CE),intrinsic viscosity([g])and insoluble content were studied.The copolymer was analyzed with Fourier transform-infrared(FTIR)and nuclear magnetic resonance(1H-NMR).Results showed that the optimal polymerization conditions were:He/Bt=0.25,temperature 40℃–50℃,Al/Ti=400–500,Ti/(Bt+He)=3x10-5-4x10-5,time 4 h.Intrinsic viscosity was found to increase with increasing Ti/(Bt+He)and decreasing Al/Ti and polymerization temperature.When the molar content of He,Al/Ti and polymerization temperature increased,the insoluble content in CH2Cl2 of copolymers decreased.When Ti/(Bt+He)and reaction time increased,the insoluble con-tent in CH2Cl2 of copolymers also increased.The crystal-lization and stereoregularity of poly(1-butene)decreased with the addition of He.展开更多
Magnesium chloride supported vanadium/titanium bimetallic Ziegler-Natta catalysts with di-i-butyl phthalate as internal donor for copolymerization of ethylene and propylene were prepared. The effects of reaction tempe...Magnesium chloride supported vanadium/titanium bimetallic Ziegler-Natta catalysts with di-i-butyl phthalate as internal donor for copolymerization of ethylene and propylene were prepared. The effects of reaction temperature, ethylene/propylene molar ratio, aluminium/vanadium (Al/V) molar ratio and titanium/vanadium molar ratio on the catalytic activity were investigated. The molecular weight, molecular weight distribution, sequence composition and crystallinity of the products were measured by gel permeation chromatography, ^13C-NMR and differential scanning calorimetry analysis, respectively. In comparison to the vanadium and titanium catalysts, the bimetallic catalyst showed higher catalytic activity and better copolymerization performance. The obtained ethylene/propylene copolymers have high molecular weight (105), broad molecular weight distribution, high propylene content with random or short blocked sequence structures (rErp = 1.919), low melting temperatures and low crystallinities (Xc 〈 20%).展开更多
Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, ins...Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.展开更多
The ethylene/cyclopentadiene (CPD) copolymerization behavior by using fluoro-substituted bis(fl- enaminoketonato) titanium complexes [FC6H4NC(CH3)CHCO(CF3)]2TiC12 (la-lc) has been investigated in detail. Upo...The ethylene/cyclopentadiene (CPD) copolymerization behavior by using fluoro-substituted bis(fl- enaminoketonato) titanium complexes [FC6H4NC(CH3)CHCO(CF3)]2TiC12 (la-lc) has been investigated in detail. Upon utilizing MMAO as a cocatalyst, complexes la-lc exhibit high catalytic activities, affording the copolymers with high molecular weight and unimodal molecular weight distribution. Compared with non-substituted complex [C6HsNC(CH3)CHCO(CF3)]2TiC12 (1), complexes la-lc can produce the copolymers with CPD incorporation adjusted in a wide range due to the enhancement of electrophilicity of metal center caused by introducing electron-withdrawing groups. Especially complex lc bearing fluorine at the para-position of N-aryl moiety provides the highest CPD incorporation, which is nearly two times (18.5 mol%) higher than the non-substituted complex 1 (8.9 mol%) under the same conditions. The highest CPD incorporation up to 24.6 mol% can be easily achieved using this complex. 1H-and 13C-NMR spectra demonstrate that these fluoro-substituted complexes possess regioselective nature with exclusive 1,2-insertion fashion, and alternating ethylene-CPD sequence can be detected at high CPD incorporation.展开更多
In this paper, the principle of preparation of titanium catalyst is described, and some possible influencing factors in the preparation process of titanium catalyst are analyzed, and the influence of these factors on ...In this paper, the principle of preparation of titanium catalyst is described, and some possible influencing factors in the preparation process of titanium catalyst are analyzed, and the influence of these factors on the performance of catalyst is discussed and analyzed from the perspective of molecular structure principle. Finally, some suggestions and optimization measures are given.展开更多
基金supported by the National High-Tech Research and Development Program of China(863 Program)(Grant No.2006AA03Z546).
文摘With TiCl4/MgCl2(Ti)and Al(i-Bu)3(Al)as catalysts,the thermoplastic copolymer of 1-butene(Bt)and 1-hexene(He)was synthesized successfully.The effects of Bt/He,Ti/(He+Bt),Al/Ti,temperature and reaction time on conversion,catalyst efficiency(CE),intrinsic viscosity([g])and insoluble content were studied.The copolymer was analyzed with Fourier transform-infrared(FTIR)and nuclear magnetic resonance(1H-NMR).Results showed that the optimal polymerization conditions were:He/Bt=0.25,temperature 40℃–50℃,Al/Ti=400–500,Ti/(Bt+He)=3x10-5-4x10-5,time 4 h.Intrinsic viscosity was found to increase with increasing Ti/(Bt+He)and decreasing Al/Ti and polymerization temperature.When the molar content of He,Al/Ti and polymerization temperature increased,the insoluble content in CH2Cl2 of copolymers decreased.When Ti/(Bt+He)and reaction time increased,the insoluble con-tent in CH2Cl2 of copolymers also increased.The crystal-lization and stereoregularity of poly(1-butene)decreased with the addition of He.
基金supported by the Program for New Century Excellent Talents in Universities(NCET-07-0142)the Program for New Century Excellent Talents in Heilongjiang Provincial Universities(NCET-06-010)+1 种基金the National Natural Science Foundation of China(No.20972025)the Science Foundation of Tianjin University of Science & Technology(No.20090420)
文摘Magnesium chloride supported vanadium/titanium bimetallic Ziegler-Natta catalysts with di-i-butyl phthalate as internal donor for copolymerization of ethylene and propylene were prepared. The effects of reaction temperature, ethylene/propylene molar ratio, aluminium/vanadium (Al/V) molar ratio and titanium/vanadium molar ratio on the catalytic activity were investigated. The molecular weight, molecular weight distribution, sequence composition and crystallinity of the products were measured by gel permeation chromatography, ^13C-NMR and differential scanning calorimetry analysis, respectively. In comparison to the vanadium and titanium catalysts, the bimetallic catalyst showed higher catalytic activity and better copolymerization performance. The obtained ethylene/propylene copolymers have high molecular weight (105), broad molecular weight distribution, high propylene content with random or short blocked sequence structures (rErp = 1.919), low melting temperatures and low crystallinities (Xc 〈 20%).
基金supported by the Science and Technology Plan Project of Hebei Province of China(16273703D)the Fundamental Research Funds for the Central Universities(2015ZD24,2017XS123)~~
文摘Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.
基金supported by the National Natural Science Foundation of China (No. 21234006)
文摘The ethylene/cyclopentadiene (CPD) copolymerization behavior by using fluoro-substituted bis(fl- enaminoketonato) titanium complexes [FC6H4NC(CH3)CHCO(CF3)]2TiC12 (la-lc) has been investigated in detail. Upon utilizing MMAO as a cocatalyst, complexes la-lc exhibit high catalytic activities, affording the copolymers with high molecular weight and unimodal molecular weight distribution. Compared with non-substituted complex [C6HsNC(CH3)CHCO(CF3)]2TiC12 (1), complexes la-lc can produce the copolymers with CPD incorporation adjusted in a wide range due to the enhancement of electrophilicity of metal center caused by introducing electron-withdrawing groups. Especially complex lc bearing fluorine at the para-position of N-aryl moiety provides the highest CPD incorporation, which is nearly two times (18.5 mol%) higher than the non-substituted complex 1 (8.9 mol%) under the same conditions. The highest CPD incorporation up to 24.6 mol% can be easily achieved using this complex. 1H-and 13C-NMR spectra demonstrate that these fluoro-substituted complexes possess regioselective nature with exclusive 1,2-insertion fashion, and alternating ethylene-CPD sequence can be detected at high CPD incorporation.
文摘In this paper, the principle of preparation of titanium catalyst is described, and some possible influencing factors in the preparation process of titanium catalyst are analyzed, and the influence of these factors on the performance of catalyst is discussed and analyzed from the perspective of molecular structure principle. Finally, some suggestions and optimization measures are given.