Tissue optical clearing by use of optical clearing agents(OCAs)has been proven to have potential to reduce the highly scattering effect of biological tissues in optical techniques.However,the difference in tissue samp...Tissue optical clearing by use of optical clearing agents(OCAs)has been proven to have potential to reduce the highly scattering effect of biological tissues in optical techniques.However,the difference in tissue samples could lead to unreliable results,making it difficult to quantitatively control the dose of OCAs during the course of tissue optical clearing.In this work,in order to study the effects of optical clearing,we customized tissue-like phantoms with optical properties of some biological tissue.Diffuse reflectance and total transmittance of tissue-like phantoms with different OCAs(DMSO or glycerol)and porcine skin tissues were measured.Then optical property parameters were calculated by inverse adding-doubling(IAD)algorithm.Results showed that OCAs could lead to a reduction in scattering of tissue-like phantoms as it did to porcine skin tissue in vitro.Furthermore,a series of relational expressions could be fit to quantitatively describe the relationship between the doses of OCAs and the reduction of scattering effects.Therefore,proper tissue-like phantom could facilitate optical clearing to be used in quantitative control of tissue optical properties,and further promote the application potential of optical clearing to light-based noninvasive diagnostic and therapeutic techniques.展开更多
To quickly and accurately identify faulty components based on the alarm information is critical for the fault diagnosis of power grids.To address this chal-lenge,this paper proposes a novel fault diagnosis method base...To quickly and accurately identify faulty components based on the alarm information is critical for the fault diagnosis of power grids.To address this chal-lenge,this paper proposes a novel fault diagnosis method based on temporal tissue-like P system(TTPS).In the proposed method,suspected faulty components are iden-tifiedfirst via a network topology analysis method.An TTPS-based fault diagnosis model is then built for each suspected faulty component to perform fault reasoning,so as to accurately detect the faulty components.To take full advantage of the action signals and temporal information of protection devices,TTPS and its forward temporal reasoning algorithm are proposed.TTPS can synchro-nously model the action and temporal logics of protection devices in an intuitive and graphical way,while the rea-soning algorithm can process the fault alarm information in parallel.To demonstrate the effectiveness and superi-ority of the proposed method,simulations are carried out on the IEEE 14-bus and 118-bus systems,while the results are compared to other two widely adopted methods.Index Terms—Alarm signal,fault diagnosis,membrane computing,power system,tissue-like P system.展开更多
The ready-to-use,structure-supporting hydrogel bioink can shorten the time for ink preparation,ensure cell dispersion,and maintain the preset shape/microstructure without additional assistance during printing.Meanwhil...The ready-to-use,structure-supporting hydrogel bioink can shorten the time for ink preparation,ensure cell dispersion,and maintain the preset shape/microstructure without additional assistance during printing.Meanwhile,ink with high permeability might facilitate uniform cell growth in biological constructs,which is beneficial to homogeneous tissue repair.Unfortunately,current bioinks are hard to meet these requirements simultaneously in a simple way.Here,based on the fast dynamic crosslinking of aldehyde hyaluronic acid(AHA)/N-carboxymethyl chitosan(CMC)and the slow stable crosslinking of gelatin(GEL)/4-arm poly(ethylene glycol)succinimidyl glutarate(PEG-SG),we present a time-sharing structure-supporting(TSHSP)hydrogel bioink with high permeability,containing 1%AHA,0.75%CMC,1%GEL and 0.5%PEG-SG.The TSHSP hydrogel can facilitate printing with proper viscoelastic property and self-healing behavior.By crosslinking with 4%PEG-SG for only 3 min,the integrity of the cell-laden construct can last for 21 days due to the stable internal and external GEL/PEG-SG networks,and cells manifested long-term viability and spreading morphology.Nerve-like,muscle-like,and cartilage-like in vitro constructs exhibited homogeneous cell growth and remarkable biological specificities.This work provides not only a convenient and practical bioink for tissue engineering,targeted cell therapy,but also a new direction for hydrogel bioink development.展开更多
Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) en- vironment. The in vitro recapitulation of tissue-like structures is meaningful, not only for ...Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) en- vironment. The in vitro recapitulation of tissue-like structures is meaningful, not only for fundamental cell biology research, but also for tissue engineering (TE). Currently, TE research adopts either the top-down or bottom-up approach. The top-down approach involves defining the macroscopic tissue features using biomaterial scaffolds and seeding cells into these scaffolds. Conversely, the bottom-up approach aims at crafting small tissue building blocks with precision-engineered structural and functional microscale features, using physical and/or chemical approaches. The bottom-up strategy takes advantage of the repeating structural and functional units that facilitate cell-cell interactions and cultures multiple cells together as a functional unit of tissue. In this review, we focus on currently available microscale methods that can control mammalian cells to assemble into 3D tissue-like structures.展开更多
Neural tissue-like constructs have important application potential in both neural tissue regeneration and individual medical treatment due to the ideal bioenvironment they provide for the growth of primary and stem ce...Neural tissue-like constructs have important application potential in both neural tissue regeneration and individual medical treatment due to the ideal bioenvironment they provide for the growth of primary and stem cells.The biomaterials used in threedimensional(3D)biomanufacturing techniques play a critical role in bioenvironment fabrication.They help optimize the manufacturing techniques and the long-term environment that supports cell structure and nutrient transmission.This paper reviews the current progress being made in the biomaterials utilized in neural cell cultures for in vitro bioenvironment construction.The following four requirements for biomaterials are evaluated:biocompatibility,porosity,supportability,and permeability.This study also summarizes the recent culture models based on primary neural cells.Furthermore,the biomaterials used for neural stem cell constructs are discussed.This study’s results indicate that compared with traditional twodimensional(2D)cultures(with minimal biomaterial requirements),modulus 3D cultures greatly benefit from optimized biomaterials for long-term culturing.展开更多
The significance of bioink suitability for the extrusion bioprinting of tissue-like constructs cannot be overemphasized.Gelatin,derived from the hydrolysis of collagen,not only can mimic the extracellular matrix to imm...The significance of bioink suitability for the extrusion bioprinting of tissue-like constructs cannot be overemphasized.Gelatin,derived from the hydrolysis of collagen,not only can mimic the extracellular matrix to immensely support cell function,but also is suitable for extrusion under certain conditions.Thus,gelatin has been recognized as a promising bioink for extrusion bioprinting.However,the development of a gelatin-based bioink with satisfactory printability and bioactivity to fabricate complex tissue-like constructs with the desired physicochemical properties and biofunctions for a specific biomedical application is still in its infancy.Therefore,in this review,we aim to comprehensively summarize the state-of-the-art methods of gelatin-based bioink application for extrusion bioprinting.Wefirstly outline the properties and requirements of gelatin-based bioinks for extrusion bioprinting,highlighting the strategies to overcome their main limitations in terms of printability,structural stability and cell viability.Then,the challenges and prospects are further discussed regarding the development of ideal gelatin-based bioinks for extrusion bioprinting to create complex tissue-like constructs with preferable physicochemical properties and biofunctions.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,Nos.30600126,30700168 and 30900275).
文摘Tissue optical clearing by use of optical clearing agents(OCAs)has been proven to have potential to reduce the highly scattering effect of biological tissues in optical techniques.However,the difference in tissue samples could lead to unreliable results,making it difficult to quantitatively control the dose of OCAs during the course of tissue optical clearing.In this work,in order to study the effects of optical clearing,we customized tissue-like phantoms with optical properties of some biological tissue.Diffuse reflectance and total transmittance of tissue-like phantoms with different OCAs(DMSO or glycerol)and porcine skin tissues were measured.Then optical property parameters were calculated by inverse adding-doubling(IAD)algorithm.Results showed that OCAs could lead to a reduction in scattering of tissue-like phantoms as it did to porcine skin tissue in vitro.Furthermore,a series of relational expressions could be fit to quantitatively describe the relationship between the doses of OCAs and the reduction of scattering effects.Therefore,proper tissue-like phantom could facilitate optical clearing to be used in quantitative control of tissue optical properties,and further promote the application potential of optical clearing to light-based noninvasive diagnostic and therapeutic techniques.
基金supported by the National Natural Science Foundation of China(No.61703345)the Chunhui Project Foundation of the Education De-partment of China(No.Z201980)+1 种基金the Open Re-search Subject of Key Laboratory of Fluid and Power Machinery(Xihua University)Ministry of Education(No.szjj2019-27).
文摘To quickly and accurately identify faulty components based on the alarm information is critical for the fault diagnosis of power grids.To address this chal-lenge,this paper proposes a novel fault diagnosis method based on temporal tissue-like P system(TTPS).In the proposed method,suspected faulty components are iden-tifiedfirst via a network topology analysis method.An TTPS-based fault diagnosis model is then built for each suspected faulty component to perform fault reasoning,so as to accurately detect the faulty components.To take full advantage of the action signals and temporal information of protection devices,TTPS and its forward temporal reasoning algorithm are proposed.TTPS can synchro-nously model the action and temporal logics of protection devices in an intuitive and graphical way,while the rea-soning algorithm can process the fault alarm information in parallel.To demonstrate the effectiveness and superi-ority of the proposed method,simulations are carried out on the IEEE 14-bus and 118-bus systems,while the results are compared to other two widely adopted methods.Index Terms—Alarm signal,fault diagnosis,membrane computing,power system,tissue-like P system.
基金This work was supported by the National Natural Science Foundation of China[grant number 52075285]the Science and Technology Program of Guangzhou,China[grant number 201604040002]+1 种基金the Key-Area Research and Development Program of Guangdong Province,China[grant number 2020B090923003]the Key Research and Development Projects of People’s Liberation Army,China[grant number.BWS17J036].
文摘The ready-to-use,structure-supporting hydrogel bioink can shorten the time for ink preparation,ensure cell dispersion,and maintain the preset shape/microstructure without additional assistance during printing.Meanwhile,ink with high permeability might facilitate uniform cell growth in biological constructs,which is beneficial to homogeneous tissue repair.Unfortunately,current bioinks are hard to meet these requirements simultaneously in a simple way.Here,based on the fast dynamic crosslinking of aldehyde hyaluronic acid(AHA)/N-carboxymethyl chitosan(CMC)and the slow stable crosslinking of gelatin(GEL)/4-arm poly(ethylene glycol)succinimidyl glutarate(PEG-SG),we present a time-sharing structure-supporting(TSHSP)hydrogel bioink with high permeability,containing 1%AHA,0.75%CMC,1%GEL and 0.5%PEG-SG.The TSHSP hydrogel can facilitate printing with proper viscoelastic property and self-healing behavior.By crosslinking with 4%PEG-SG for only 3 min,the integrity of the cell-laden construct can last for 21 days due to the stable internal and external GEL/PEG-SG networks,and cells manifested long-term viability and spreading morphology.Nerve-like,muscle-like,and cartilage-like in vitro constructs exhibited homogeneous cell growth and remarkable biological specificities.This work provides not only a convenient and practical bioink for tissue engineering,targeted cell therapy,but also a new direction for hydrogel bioink development.
基金supported by Ministry of Science and Technology of China(Grant Nos.2009CB930001 and 2011CB933201)Chinese Academy ofSciences(Grant No.KJCX2-YW-M15)the National Natural ScienceFoundation of China(Grant Nos.20890020,90813032,21025520 and 51073045)
文摘Different cell types make up tissues and organs hierarchically and communicate within a complex, three-dimensional (3D) en- vironment. The in vitro recapitulation of tissue-like structures is meaningful, not only for fundamental cell biology research, but also for tissue engineering (TE). Currently, TE research adopts either the top-down or bottom-up approach. The top-down approach involves defining the macroscopic tissue features using biomaterial scaffolds and seeding cells into these scaffolds. Conversely, the bottom-up approach aims at crafting small tissue building blocks with precision-engineered structural and functional microscale features, using physical and/or chemical approaches. The bottom-up strategy takes advantage of the repeating structural and functional units that facilitate cell-cell interactions and cultures multiple cells together as a functional unit of tissue. In this review, we focus on currently available microscale methods that can control mammalian cells to assemble into 3D tissue-like structures.
基金supported by 111 Project(Grant No.B17026)the National Nature Science Foundation of China(Grant No.31700928)the Chinese Postdoctoral Science Foundation(Grant No.2017M610881)
文摘Neural tissue-like constructs have important application potential in both neural tissue regeneration and individual medical treatment due to the ideal bioenvironment they provide for the growth of primary and stem cells.The biomaterials used in threedimensional(3D)biomanufacturing techniques play a critical role in bioenvironment fabrication.They help optimize the manufacturing techniques and the long-term environment that supports cell structure and nutrient transmission.This paper reviews the current progress being made in the biomaterials utilized in neural cell cultures for in vitro bioenvironment construction.The following four requirements for biomaterials are evaluated:biocompatibility,porosity,supportability,and permeability.This study also summarizes the recent culture models based on primary neural cells.Furthermore,the biomaterials used for neural stem cell constructs are discussed.This study’s results indicate that compared with traditional twodimensional(2D)cultures(with minimal biomaterial requirements),modulus 3D cultures greatly benefit from optimized biomaterials for long-term culturing.
基金support for this work from the National Key R&D Program of China(No.2018YFA0703100)the National Natural Sci-ence Foundation of China(Nos.32122046,82072082,and 32000959)+2 种基金the Youth Innovation Promotion Association of CAS(No.2019350)the Guangdong Natural Science Foundation(No.2019A1515111197)the Shenzhen Fundamental Research Foun-dation(Nos.JCYJ20190812162809131,JCYJ20200109114006014,JCYJ20210324113001005,and JCYJ20210324115814040).
文摘The significance of bioink suitability for the extrusion bioprinting of tissue-like constructs cannot be overemphasized.Gelatin,derived from the hydrolysis of collagen,not only can mimic the extracellular matrix to immensely support cell function,but also is suitable for extrusion under certain conditions.Thus,gelatin has been recognized as a promising bioink for extrusion bioprinting.However,the development of a gelatin-based bioink with satisfactory printability and bioactivity to fabricate complex tissue-like constructs with the desired physicochemical properties and biofunctions for a specific biomedical application is still in its infancy.Therefore,in this review,we aim to comprehensively summarize the state-of-the-art methods of gelatin-based bioink application for extrusion bioprinting.Wefirstly outline the properties and requirements of gelatin-based bioinks for extrusion bioprinting,highlighting the strategies to overcome their main limitations in terms of printability,structural stability and cell viability.Then,the challenges and prospects are further discussed regarding the development of ideal gelatin-based bioinks for extrusion bioprinting to create complex tissue-like constructs with preferable physicochemical properties and biofunctions.