期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
Transfect bone marrow stromal cells with pcDNA3.1-VEGF to construct tissue engineered bone in defect repair 被引量:15
1
作者 SI Hai-peng LU Zhi-hua +7 位作者 LIN Yong-liang LI Jing-jing YIN Qing-feng ZHAO Dong-mei WANG Shao-jin LI Jian-min WANG Hai-bin ZHANG Xi-hua 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第5期906-911,共6页
Background We previously showed that nano-hydroxyapatite/carboxymethyl chitosan (n-Ha/CMCS) displayed excellent mechanical properties, good degradation rates and exceptional biocompatibility, with negligible toxicit... Background We previously showed that nano-hydroxyapatite/carboxymethyl chitosan (n-Ha/CMCS) displayed excellent mechanical properties, good degradation rates and exceptional biocompatibility, with negligible toxicity. The aim of this study was to determine the effect of the same composite with vascular endothelial growth factor (VEGF)transfected bone marrow stromal cells (BMSCs) in a rabbit radial defect model. 展开更多
关键词 bone defect bone marrow stromal cells PLASMID bone tissue engineering repair GENIPIN
原文传递
Three-dimensional printed tissue engineered bone for canine mandibular defects 被引量:2
2
作者 Li Zhang Junling Tang +4 位作者 Libo Sun Ting Zheng Xianzhi Pu Yue Chen Kai Yang 《Genes & Diseases》 SCIE 2020年第1期138-149,共12页
Background:Three-dimensional(3D)printed tissue engineered bone was used to repair the bone tissue defects in the oral and maxillofacial(OMF)region of experimental dogs.Material and methods:Canine bone marrow stromal c... Background:Three-dimensional(3D)printed tissue engineered bone was used to repair the bone tissue defects in the oral and maxillofacial(OMF)region of experimental dogs.Material and methods:Canine bone marrow stromal cells(BMSCs)were obtained from 9 male Beagle dogs and in vitro cultured for osteogenic differentiation.The OMF region was scanned for 3D printed surgical guide plate and mold by ProJet1200 high-precision printer using implant materials followed sintering at 1250℃.The tissue engineered bones was co-cultured with BASCs for 2 or 8 d.The cell scaffold composite was placed in the defects and fixed in 9 dogs in 3 groups.Postoperative CT and/or micro-CT scans were performed to observe the osteogenesis and material degradation.Results:BMSCs were cultured with osteogenic differentiation in the second generation(P2).The nanoporous hydroxyapatite implant was made using the 3D printing mold with the white porous structure and the hard texture.BMSCs with osteogenic induction were densely covered with the surface of the material after co-culture and ECM was secreted to form calcium-like crystal nodules.The effect of the tissue engineered bone on the in vivo osteogenesis ability was no significant difference between 2 d and 8 d of the compositing time.Conclusions:The tissue-engineered bone was constructed by 3D printing mold and hightemperature sintering to produce nanoporous hydroxyapatite scaffolds,which repair in situ bone defects in experimental dogs.The time of compositing for tissue engineered bone was reduced from 8 d to 2 d without the in vivo effect. 展开更多
关键词 Mandibular defect tissue engineering bone 3D printing CAD/CAM BMSCS
原文传递
Thiolated nanomaterials for bone tissue engineering:synthesis,mechanisms,and applications
3
作者 Yi-Ning Gong Bin Zhu +4 位作者 Ya-Zhong Bu Bao-Ji Du Shi-Chang Liu Lei Luo Liang Yan 《Rare Metals》 2025年第7期4346-4375,共30页
Owing to their unique biological effects and physicochemical properties,nanomaterials have garnered substantial attention in the field of bone tissue engineering(BTE),targeting the repair and restoration of impaired b... Owing to their unique biological effects and physicochemical properties,nanomaterials have garnered substantial attention in the field of bone tissue engineering(BTE),targeting the repair and restoration of impaired bone tissue.In recent years,strategies for the design and optimization of nanomaterials through thiolation modification have been widely applied in BTE.This review concisely summarizes the categories of nanomaterials commonly used in BTE and focuses on various strategies for the modification of nanomaterials via thiolation.A multifaceted analysis of the mechanisms by which thiolated nanomaterials enhance nanomaterial-cell interactions,promote drug loading and release,and modulate osteogenic differentiation is presented.Furthermore,this review introduces biomedical applications of thiolated nanomaterials in BTE,including as scaffold components for bone regeneration,coatings for bone implants,and drug delivery systems.Finally,the future perspectives and challenges in the development of this field are discussed.Thiolation modification strategies provide a platform for developing new ideas and methods for designing nanomaterials for BTE and are expected to accelerate the development and clinical translation of novel bone repair materials. 展开更多
关键词 bone tissue engineering NANOMATERIALS THIOLATION bone regeneration Biomedical applications
原文传递
A Novel Three-Dimensional-Printed Polycaprolactone/Nanohydroxyapatite-Nanoclay Scaffold for Bone Tissue Engineering Applications
4
作者 Saba Nazari Seyed Ali Poursamar +2 位作者 Mitra Naeimi Mohammad Rafienia Majid Monajjemi 《Journal of Bionic Engineering》 2025年第4期1863-1880,共18页
The field of bone tissue engineering has experienced an increase in prevalence due to the inherent challenge of the natural regeneration of significant bone deformities.This investigation focused on the preparation of... The field of bone tissue engineering has experienced an increase in prevalence due to the inherent challenge of the natural regeneration of significant bone deformities.This investigation focused on the preparation of Three-Dimensional(3D)-printed Polycaprolactone(PCL)scaffolds with varying proportions of Nanohydroxyapatite(NHA)and Nanoclay(NC),and their physiochemical and biological properties were assessed.The mechanical properties of PCL are satisfactory;however,its hydrophobic nature and long-term degradation hinder its use in scaffold fabrication.NHA and NC have been employed to improve the hydrophilic characteristics,mechanical strength,adhesive properties,biocompatibility,biodegradability,and osteoconductive behavior of PCL.The morphology results demonstrated 3D-printed structures with interconnected rectangular macropores and proper nanoparticle distribution.The sample containing 70 wt%NC showed the highest porosity(65.98±2.54%),leading to an increased degradation rate.The compressive strength ranged from 10.65±1.90 to 84.93±9.93 MPa,which is directly proportional to the compressive strength of cancellous bone(2–12 MPa).The wettability,water uptake,and biodegradability of PCL scaffolds considerably improved as the amount of NC increased.The results of the cellular assays exhibited increased proliferation,viability,and adhesion of MG-63 cells due to the addition of NHA and NC to the scaffolds.Finally,according to the in vitro results,it can be concluded that 3D-printed samples with higher amounts of NC can be regarded as a suitable scaffold for expediting the regeneration process of bone defects. 展开更多
关键词 POLYCAPROLACTONE HYDROXYAPATITE NANOCLAY 3D printing bone tissue engineering
暂未订购
Emerging Technologies in Bone Tissue Engineering:A Review
5
作者 Sonali Rastogi Ritu Verma +5 位作者 Sampath A.Gouru Krishnaraju Venkatesan P.Muthu Pandian Mohd Ianveer Khan Trinayan Deka Pawan Kumar 《Journal of Bionic Engineering》 2025年第5期2261-2285,共25页
This review article presents a comprehensive overview of emerging technologies in bone tissue engineering(BTE).This rapidly advancing field addresses the challenges of bone defects and injuries beyond traditional trea... This review article presents a comprehensive overview of emerging technologies in bone tissue engineering(BTE).This rapidly advancing field addresses the challenges of bone defects and injuries beyond traditional treatments like autografts and allografts.The study highlights the integration of 3D bioprinting,stem cell therapy,gene therapy,biomaterials,nanotechnology,and computational modeling as transformative approaches in BTE.Developing biomimetic scaffolds,advanced bio-inks,and composite nanomaterials has enhanced seaffold design,improving mechanical properties and biocompatibility.Innovatiohs in gene therapy and bioactive molecule delivery are showcased for their ability to modulate cellular behavior and enhance osteogenesis.Stem cell-based therapies leverage the regenerative potential of mesenchymal stem cells,facilitating tissue integration and functional restoration.Computational tools,including finite element analysis(FEA)and agent-based modelling,aid in the optimization of scaffold design,predicting mechanical responses and biological behaviors.Despite notable progress,signifieant challenges,such as achieving reliable vascularization,sealable manu-facturing of engineered constructs,and effective clinical translation,remain substantial barriers to widespread adoption.Future research efforts focused on refining these technologies are vital for translating innovative strategies into elinical practice,paving the way for personalized regenerative solutions in bone repair. 展开更多
关键词 3D printing BIOMATERIALS NANOTECHNOLOGY Gene therapy bone tissue engineering
暂未订购
Chitosan:A Scaffold Biomaterial in 3D Bone Tissue Engineering and Its Biological Activities
6
作者 Gurung Chetali Nawaz Aamir +1 位作者 Udduttulla Anjaneyulu REN Peigen 《集成技术》 2025年第2期86-108,共23页
The ability to replicate the microenvironment of the human body through the fabrication of scaffolds is a significant achievement in the biomedical field.However,the search for the ideal scaffold is still in its infan... The ability to replicate the microenvironment of the human body through the fabrication of scaffolds is a significant achievement in the biomedical field.However,the search for the ideal scaffold is still in its infancy and there are significant challenges to overcome.In the modern era,the scientific community is increasingly turned to natural substances due to their superior biological ability,lower cost,biodegradability,and lower toxicity than synthetic lab-made products.Chitosan is a well-known polysaccharide that has recently garnered a high amount of attention for its biological activities,especially in 3D bone tissue engineering.Chitosan closely matches the native tissues and thus stands out as a popular candidate for bioprinting.This review focuses on the potential of chitosan-based scaffolds for advancements and the drawbacks in bone treatment.Chitosan-based nanocomposites have exhibited strong mechanical strength,water-trapping ability,cellular interaction,and biodegradability.Chitosan derivatives have also encouraged and provided different routes for treatment and enhanced biological activities.3D tailored bioprinting has opened new doors for designing and manufacturing scaffolds with biological,mechanical,and topographical properties. 展开更多
关键词 CHITOSAN 3D bioprinting bone tissue engineering SCAFFOLD tissue regeneration chitosan derivative
在线阅读 下载PDF
Nanofiber scaffold for bone tissue engineering:Mechanism,challenge and future prospect
7
作者 Rui-Ming Wen Hai-Xia Wang +1 位作者 Zhi-Jun Liu Zi-Qiang Duan 《World Journal of Orthopedics》 2025年第12期71-81,共11页
Nanofiber scaffold has built a bionic microenvironment for bone marrow mesenchymal stem cells by highly simulating the topological structure of natural extracellular matrix.Its ordered fiber network effectively guides... Nanofiber scaffold has built a bionic microenvironment for bone marrow mesenchymal stem cells by highly simulating the topological structure of natural extracellular matrix.Its ordered fiber network effectively guides the directional migration and spatial arrangement of cells through the mechanical signal transduction mediated by integrin.Surface functionalization can synergistically activate the osteogenic transcription network and significantly enhance the osteogenic differentiation potential of cells.The precise design of scaffold stiffness affects the cell fate choice by regulating the nuclear translocation of mechanical sensitive factors.This triple cooperative strategy of“physical topology-biochemical signal-mechanical microenvironment”effectively overcomes the biological inertia of traditional scaffolds and provides a dynamic and adjustable platform for bone defect repair.Looking forward to the future,breaking through the bottleneck of clinical transformation such as long-term intelligent slow release of functional factors and in situ efficient construction of vascular network is the key to promoting nanofiber scaffolds from basic research to precise bone regeneration treatment. 展开更多
关键词 Nanofibrous scaffolds Triple synergistic regulation bone regeneration Mecha-nobionics Precision bone tissue engineering
暂未订购
Cardiac Cell Therapy and Tissue Engineered with Autologous Bone Marrow Mesenchymal Cells Improve Myocardial Perfusion. An Evaluation by Pinhole Gated-SPECT
8
作者 Nguyen TRAN Pierre-Yves MARIE +2 位作者 Philippe FRANKEN Jean-Fran·ois STOLTZ Jean-Pierre VILLEMOT 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期15-16,共2页
关键词 An Evaluation by Pinhole Gated-SPECT Cardiac Cell Therapy and tissue engineered with Autologous bone Marrow Mesenchymal Cells Improve Myocardial Perfusion cell BMSCs
暂未订购
Advances in polymer-based hydrogel systems for adipose-derived mesenchymal stem cells toward bone regeneration
9
作者 Nivetha Suresh Sundaravadhanan Lekhavadhani Nagarajan Selvamurugan 《World Journal of Orthopedics》 2026年第1期13-28,共16页
Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant i... Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration. 展开更多
关键词 Mesenchymal stem cells Adipose-derived mesenchymal stem cells bone tissue engineering HYDROGELS bone regeneration POLYMERS
在线阅读 下载PDF
Bone Regeneration Based on Tissue Engineering Conceptions – A 21st Century Perspective 被引量:38
10
作者 Jan Henkel Maria A.Woodruff +6 位作者 Devakara R.Epari Roland Steck Vaida Glatt Ian C.Dickinson Peter F.M.Choong Michael A.Schuetz Dietmar W.Hutmacher 《Bone Research》 SCIE CAS 2013年第3期216-248,共33页
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical te... The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental "origin" require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. 展开更多
关键词 bone tissue engineering regenerative medicine additve manufacturing clinical translation scaffolds
暂未订购
Study on β-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material 被引量:14
11
作者 Fang Geng Lili Tan +4 位作者 Bingchun Zhang Chunfu Wu Yonglian He Jingyu Yang Ke Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第1期123-129,共7页
Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactiveβ... Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactiveβ- tricalcium phosphate (β-TCP) coatings were prepared on and the biodegradation mechanism was simply evaluated the porous Mg to further improve its biocompatibility, in vitro. It was found that the mechanical properties of this type of porous Mg significantly depended on its porosity. Elastic modulus and compressive strength similar to human bones could be obtained for the porous Mg with porosity of 42.6%-51%. It was observed that the human osteosarcoma cells (UMR106) were well adhered and proliferated on the surface of the β- TCP coated porous Mg, which indicates that theβ-TCP coated porous Mg is promising to be a bone tissue engineering scaffold material. 展开更多
关键词 MAGNESIUM bone tissue engineering β-TCP coating BIOCOMPATIBILITY
暂未订购
Biologically Inspired Self-assembling Synthesis of Bone-like Nano-hydroxyapatite/PLGA-(PEG-ASP)_n Composite: A New Biomimetic Bone Tissue Engineering Scaffold Material 被引量:13
12
作者 郭晓东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期234-237,共4页
A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop... A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering. 展开更多
关键词 bone tissue engineering biomimetic material BIOMINERALIZATION self-asserrdaling poly D L-lactide-co-glycolide hydroxyapatite
暂未订购
Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering 被引量:38
13
作者 Gabriela Fernandes Shuying Yang 《Bone Research》 SCIE CAS CSCD 2016年第4期185-205,共21页
Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone l... Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone loss. Autogenous bone is the present gold standard of bone regeneration. However, disadvantages like donor site morbidity and its decreased availability limit its use. Even allografts and synthetic grafting materials have their own limitations. As certain specific stem cells can be directed to differentiate into an osteoblastic lineage in the presence of growth factors(GFs), it makes stem cells the ideal agents for bone regeneration.Furthermore, platelet-rich plasma(PRP), which can be easily isolated from whole blood, is often used for bone regeneration, wound healing and bone defect repair. When stem cells are combined with PRP in the presence of GFs, they are able to promote osteogenesis. This review provides in-depth knowledge regarding the use of stem cells and PRP in vitro, in vivo and their application in clinical studies in the future. 展开更多
关键词 bone CELL Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering BMSCS STEM
暂未订购
Experimental Study on Allogenic Decalcified Bone Matrix as Carrier for Bone Tissue Engineering 被引量:12
14
作者 郑东 杨述华 +5 位作者 李进 许伟华 杨操 刘勇 潘海涛 黄自锋 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2004年第2期147-150,共4页
The biocompatibility and osteogenic activity of allogenic decalcified bone matrix (DBM) used as a carrier for bone tissue engineering were studied. Following the method described by Urist, allogenic DBM was made. In v... The biocompatibility and osteogenic activity of allogenic decalcified bone matrix (DBM) used as a carrier for bone tissue engineering were studied. Following the method described by Urist, allogenic DBM was made. In vitro, DBM and bone marrow stromal cell (BMSC) from rabbits were co-cultured for 3-7 days and subjected to HE staining, and a series of histomorphological observations were performed under phase-contrast microscopy and scanning electron microscopy (SEM). In vivo the mixture of DBM/BMSC co-cultured for 3 days was planted into one side of muscules sacrospinalis of rabbits, and the DBM without BMSC was planted into other side as control. Specimens were collected at postoperative week 1, 2 and 4, and subjected to HE staining, and observed under SEM. The results showed during culture in vitro, the BMSCs adherent to the wall of DBM grew, proliferated and had secretive activity. The in vivo experiment revealed that BMSCs and undifferentiated mesenchymal cells in the perivascular region invaded gradually and proliferated together in DBM/BMSC group, and colony-forming units of chondrocytes were found. Osteoblasts, trabecular bone and medullary cavity appeared. The inflammatory reaction around muscles almost disappeared at the second weeks. In pure DBM group, the similar changes appeared from the surface of the DBM to center, and the volume of total regenerate bones was less than the DBM/BMSC group at the same time. The results indicated that the mixture of DBM and BMSC had good biocompatibility and ectopic induced osteogenic activity. 展开更多
关键词 bone tissue engineering decalcified bone matrix bone marrow stromal cell BIOCOMPATIBILITY
暂未订购
Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells 被引量:13
15
作者 Ping Wang Liang Zhao +3 位作者 Jason Liu Michael D Weir Xuedong Zhou Hockin H K Xu 《Bone Research》 SCIE CAS 2014年第3期139-151,共13页
Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic simila... Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/ morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments. 展开更多
关键词 CPC bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells STEM
暂未订购
Exploring the interconnectivity of biomimetic hierarchical porous Mg scaffolds for bone tissue engineering:Effects of pore size distribution on mechanical properties,degradation behavior and cell migration ability 被引量:5
16
作者 Gaozhi Jia Hua Huang +8 位作者 Jialin Niu Chenxin Chen Jian Weng Fei Yu Deli Wang Bin Kang Tianbing Wang Guangyin Yuan Hui Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1954-1966,共13页
Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnec... Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process. 展开更多
关键词 bone tissue engineering Porous Mg scaffold INTERCONNECTIVITY Pore size distribution Cell migration
在线阅读 下载PDF
Evaluating and Modeling the Mechanical Properties of the Prepared PLGA/nano-BCP Composite Scaffolds for Bone Tissue Engineering 被引量:3
17
作者 M. Ebrahimian-Hosseinabadi F. Ashrafizadeh +1 位作者 M. Etemadifar Subbu S. Venkatraman 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第12期1105-1112,共8页
In this paper, preparation of nano-biphasic calcium phosphate (nBCP), mechanical behavior and load-bearing of poly (lactide-co-glycolide) (PLGA) and PLGA/nBCP are presented. The nBCP with composition of 63/37 (... In this paper, preparation of nano-biphasic calcium phosphate (nBCP), mechanical behavior and load-bearing of poly (lactide-co-glycolide) (PLGA) and PLGA/nBCP are presented. The nBCP with composition of 63/37 (w/w) HA/-TCP (hydroxyapatite/fl-tricalcium phosphate) was produced by heating of bovine bone at 700℃. Composite scaffolds were made by using PLGA matrix and 10-50 wt% nBCP powders as reinforcement material. All scaffolds were prepared by thermally induced solid-liquid phase separation (TIPS) at -60~C under 4 Pa (0.04 mbar) vacuum. The results of elastic modulus testing were adjusted with Ishai-Cohen and Narkis models for rigid polymeric matrix and compared to each other. PLGA/nBCP scaffolds with 30 wt% nBCP showed the highest value of yield strength among the scaffolds. In addition, it was found that by increasing the nBCP in scaffolds to 50 wt%, the modulus of elasticity was highly enhanced. However, the optimum value of yield strength was obtained at 30 wt% nBCP, and the agglomeration of reinforcing particles at higher percentages caused a reduction in yield strength. It is clear that the elastic modulus of matrix has the significant role in elastic modulus of scaffolds, as also the size of the filler particles in the matrix. 展开更多
关键词 SCAFFOLD bone tissue engineering Poly (lactide-co-glycolide) (PLGA) Biphasiccalcium phosphate Porous composite
原文传递
Lanthanum doped octacalcium phosphate/polylactic acid scaffold fabricated by 3D printing for bone tissue engineering 被引量:2
18
作者 Zeya Xu Bin Lin +7 位作者 Chaoqian Zhao Yanjin Lu Tingting Huang Yan Chen Jungang Li Rongcan Wu Wenge Liu Jinxin Lin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第23期229-242,共14页
Lanthanum(La)has tremendous potential in the treatment and prevention of bone diseases especially osteoporosis and metabolic disorders.However,controlling its distribution and keeping the release of La^(3+)ions sustai... Lanthanum(La)has tremendous potential in the treatment and prevention of bone diseases especially osteoporosis and metabolic disorders.However,controlling its distribution and keeping the release of La^(3+)ions sustained and steady in the body is still a big challenge.In this study,we prepared La-OCP powders via co-precipitation method,and further prepared La-OCP/PLA porous scaffolds by 3 D printing.La^(3+)was successfully introduced into the OCP crystal structure and substituted Ca^(2+)at the Ca-5 and Ca-8 sites.In particular,some La^(3+)ions were deposited on the crystal surface in the form of nanoparticles.Both octacalcium phosphate(OCP,Ca_(8)H_(2)(PO_(4))_6·5 H_(2)O)crystals and nanoparticles played as the carriers for La^(3+)ions.The La-OCP/PLA scaffolds displayed obvious mineralization effects and sustained release of La^(3+).The scaffolds contained a uniform structure with rough micro surface topography which acted as a suitable pathway for BMSCs cells to adhere,grow and proliferation.At a certain La^(3+)concentration,the extracts from La-OCP/PLA scaffolds increased the expression of osteogenesis-related genes,thus promoting the osteogenic differentiation of BMSCs.Moreover,the extracts regulated the immune responses.The experiment in vivo proved that La-OCP/PLA porous scaffolds were safe and could enhance bone defect regeneration in vivo.These findings suggest that 3 D printed La-OCP/PLA porous scaffolds have promising potentials in bone tissue engineering. 展开更多
关键词 LANTHANUM Octacalcium phosphate SCAFFOLD 3D printing bone tissue engineering Polylactic acid
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部