The effects of Tip-Edge plus appliance in the treatment of Angle Ⅱ1 malocclusion and the mechanism were investigated. Fifty-two Angle Ⅱ1 children, aged from 12.3-14.2 years, with mandibu- lar retrusion in permanent ...The effects of Tip-Edge plus appliance in the treatment of Angle Ⅱ1 malocclusion and the mechanism were investigated. Fifty-two Angle Ⅱ1 children, aged from 12.3-14.2 years, with mandibu- lar retrusion in permanent dentition were selected and treated with Tip-Edge plus appliance. Lateral cephalometric films taken before and after treatment were analyzed. The arithmetic mean and standard deviation were calculated for each variable. Paired t-test was performed to evaluate the significant treatment change. Results showed that the average treatment time was 16 months. Normal overjet and overbite were established with retroclination of upper incisors and proclination of lower incisors. U1-NA was decreased by 15.4° (P〈0.01). ANB and Y axial angle were decreased significantly (P〈0.05) Soft tissue measurements showed that FCA and UL-E were decreased dramatically (P〈0.05), and LL-E was increased significantly (P〈0.05). Remarkable soft tissue change was noted after the treatment and convex facial profile changed to the straight profile. In conclusion, Tip-Edge plus technique can quickly and efficiently correct anterior bite and lateral outlook.展开更多
Background As the only active component in final treatment phase of Tip-Edge Plus technique, the activation of nickel-titanium orthodontic archwires is one of the factors that affect the torque expression. It is neces...Background As the only active component in final treatment phase of Tip-Edge Plus technique, the activation of nickel-titanium orthodontic archwires is one of the factors that affect the torque expression. It is necessary to evaluate the mechanical properties of the nickel-titanium wire used in the final treatment phase in simulated oral environments to forecast the treatment outcomes. Methods The mechanical properties of 171 thermal nickel-titanium wires of 0.35 mm (0.014-in) in diameters with different deflection of 40 mm in length were investigated with three-point bending test. The samples were divided into 2 groups: as-received and bended groups. In the bended group, samples were divided into 7 subgroups according to the amounts of deflection and named by the canine angulations (-25~, -19~, -13~, -7~, -1~, +5~, +11~). The deflection of wires was made by inserting the wires into the deep tunnel of Tip-Edge Plus brackets positioned in plaster casts with different canine angulations to mimic the use of nickel-titanium wires in the final treatment phase. Immersed the bended group in artificial saliva (pH 6.8) and preserved at 37.0~C. Eight durations of incubation were tested: 1 to 8 weeks. Three analogous samples of each group and subgroups were tested per week. Stiffness (YS:E) and the load-deflection characteristics of unloading plateau section were obtained. Results Significant changes in specific mechanical properties were observed in long-term immersed and large deflected wires compared with as-received groups. Both immersion time and deflection affected the mechanical properties of wires in the simulated oral environment, and the two factors had synergistic effect. In groups -25~, -19~ and -13~, stiffness (YS:E) increased then decreased and average plateau force and ratio of variance decreased then increased correspondingly at specific time. Conclusions In the final treatment phase of Tip-Edge Plus technique, the mechanical properties of nickel-titanium wire are associated with the using time and amounts of deflection and it may affect treatment outcomes. As the main reason for wire deflection, canine crown angulation plays an important role in the wire performance. It may be wise to focus on the canine crown angulations and using time in clinic with Tip-Edge Plus technique and make proper adjustment to help to make sure the treatment outcomes.展开更多
基金supported by grants from the National Natural Science Foundation of China(No.81100776)Army Medical Research "12th Five-Year Plan" project(CWS11J118)
文摘The effects of Tip-Edge plus appliance in the treatment of Angle Ⅱ1 malocclusion and the mechanism were investigated. Fifty-two Angle Ⅱ1 children, aged from 12.3-14.2 years, with mandibu- lar retrusion in permanent dentition were selected and treated with Tip-Edge plus appliance. Lateral cephalometric films taken before and after treatment were analyzed. The arithmetic mean and standard deviation were calculated for each variable. Paired t-test was performed to evaluate the significant treatment change. Results showed that the average treatment time was 16 months. Normal overjet and overbite were established with retroclination of upper incisors and proclination of lower incisors. U1-NA was decreased by 15.4° (P〈0.01). ANB and Y axial angle were decreased significantly (P〈0.05) Soft tissue measurements showed that FCA and UL-E were decreased dramatically (P〈0.05), and LL-E was increased significantly (P〈0.05). Remarkable soft tissue change was noted after the treatment and convex facial profile changed to the straight profile. In conclusion, Tip-Edge plus technique can quickly and efficiently correct anterior bite and lateral outlook.
文摘Background As the only active component in final treatment phase of Tip-Edge Plus technique, the activation of nickel-titanium orthodontic archwires is one of the factors that affect the torque expression. It is necessary to evaluate the mechanical properties of the nickel-titanium wire used in the final treatment phase in simulated oral environments to forecast the treatment outcomes. Methods The mechanical properties of 171 thermal nickel-titanium wires of 0.35 mm (0.014-in) in diameters with different deflection of 40 mm in length were investigated with three-point bending test. The samples were divided into 2 groups: as-received and bended groups. In the bended group, samples were divided into 7 subgroups according to the amounts of deflection and named by the canine angulations (-25~, -19~, -13~, -7~, -1~, +5~, +11~). The deflection of wires was made by inserting the wires into the deep tunnel of Tip-Edge Plus brackets positioned in plaster casts with different canine angulations to mimic the use of nickel-titanium wires in the final treatment phase. Immersed the bended group in artificial saliva (pH 6.8) and preserved at 37.0~C. Eight durations of incubation were tested: 1 to 8 weeks. Three analogous samples of each group and subgroups were tested per week. Stiffness (YS:E) and the load-deflection characteristics of unloading plateau section were obtained. Results Significant changes in specific mechanical properties were observed in long-term immersed and large deflected wires compared with as-received groups. Both immersion time and deflection affected the mechanical properties of wires in the simulated oral environment, and the two factors had synergistic effect. In groups -25~, -19~ and -13~, stiffness (YS:E) increased then decreased and average plateau force and ratio of variance decreased then increased correspondingly at specific time. Conclusions In the final treatment phase of Tip-Edge Plus technique, the mechanical properties of nickel-titanium wire are associated with the using time and amounts of deflection and it may affect treatment outcomes. As the main reason for wire deflection, canine crown angulation plays an important role in the wire performance. It may be wise to focus on the canine crown angulations and using time in clinic with Tip-Edge Plus technique and make proper adjustment to help to make sure the treatment outcomes.