Density functional theory calculations were used to unravel the mechanism of CO_2 electroreduction on SnO_x surfaces. Under highly reducing conditions(<-0.6 V vs. RHE), the SnO(101) surface with oxygen vacancies is...Density functional theory calculations were used to unravel the mechanism of CO_2 electroreduction on SnO_x surfaces. Under highly reducing conditions(<-0.6 V vs. RHE), the SnO(101) surface with oxygen vacancies is likely the active phase for CO_2 reduction. We showed that the proton-electron transfer to adsorbed *CO_2 forming *OCHO, a key intermediate for producing HCOOH, is energetically more favorable than the formation of *COOH, justifying the selectivity trends observed on Sn-based electrocatalysts. With linear scaling relations, we propose the free formation energy of *CO_2 at the oxygen vacancy as the reactivity descriptor. By engineering the strain of the SnO(101) surface, the selectivity towards HCOOH can be further optimized at reduced overpotentials.展开更多
Defect engineering,especially oxygen vacancies(O-vacancies) introduction into metal oxide materials has been proved to be an effective strategy to manipulate their surface electron exchange processes.However,quantitat...Defect engineering,especially oxygen vacancies(O-vacancies) introduction into metal oxide materials has been proved to be an effective strategy to manipulate their surface electron exchange processes.However,quantitative investigation of O-vacancies on CO2 electroreduction still remains rather ambiguous.Herein,a series of nanoporous tin oxide(SnOx) materials have been prepared by thermal treatment at various temperatures and reaction conditions.The annealing temperature dependent Ovacancies property of the SnOx was revealed and attributed to the balance tunning of the desorption of oxygen species and the continous oxidation of SnOx.The as-prepared nanoporous SnOx with 300℃treatment was found to be highest O-vacant material and showed an impressive CO2 RR activity and selectivity towards the conversion of CO2 into formic acid(up to 88.6%),and superior HCOOH incomplete current density to other samples.The ideal performance of the O-vacancies rich SnOx-300 material can be ascribed to the high delocalized electron density inducing much enhanced adsorption of CO2 with O binding and benefiting the subsequent reduction with high selectively forming of formic acid.展开更多
Photoelectrocatalytic(PEC)materials for harvesting solar energy can be discovered from existing photocatalytic semiconductors.Nonetheless,mixed valence tin oxides,a group of widely reported visible light active photoc...Photoelectrocatalytic(PEC)materials for harvesting solar energy can be discovered from existing photocatalytic semiconductors.Nonetheless,mixed valence tin oxides,a group of widely reported visible light active photocatalysts,can hardly be developed into efficient PEC photoelectrodes.To overcome this difficulty by clarifying its origin,two typical mixed valence tin oxides,Sn^(2+):SnO_(2) microrods and porous Sn_(3)O_(4) particles were deliberately prepared as the models.Sn^(2+):SnO_(2) microrods of less porosity exhibited a photocurrent over ten times higher than Sn_(3)O_(4) particles.Photo-electrochemical impedance spectroscopy revealed this was due to their charge kinetics difference,specifically the internal transport/-transfer responding to the morphology.Moreover,hydroxyl residuals from synthesis were found to be very inhibitive for the PEC efficiency as well,which was in coherence with our TGA and Raman spectroscopic study.These finding experimentally proved the necessity of reconsidering the surface area,crystallinity,and defects when developing photocatalysts into efficient PEC structures.展开更多
Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for ...Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for productions of materials with well-defined functional properties.Pulse electrolysis,a top-down electrochemical approach,has been demonstrated to be a viable method for producing nanostructured materials with a particular efficacy in the synthesis of tin oxides.This method allows for significant control over the composition and shape of the resulting tin oxides particles by modifying the anionic composition of the aqueous electrolyte,obviating the need for additional capping agents in the synthesis process and eliminating the requirement for high-temperature post-treatments.The composition and microstructural characteristics of these oxides are found to be contingent upon the differing stabilities of tin fluoride and chloride complexes,as well as the distinct mechanisms of interaction between chloride and fluoride anions with an oxidized tin surface,which is influenced by the varying kosmotropic/chaotropic nature of these anions.The composition and microstructural characteristics of the obtained dispersed tin oxides would thus determine their potential applications as an anode material for lithium-ion batteries,as a photocatalyst,or as an oxyphilic component of a hybrid support for a platinum-containing electrocatalyst.展开更多
Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is...Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is attributed to the instability of Sn^(2+),which easily oxidizes to Sn^(4+),creating Sn vacancies and increasing the open-circuit voltage loss.In this work,we implemented tin thiocyanate(Sn(SCN)_(2))as an additive for passivating the bulk defects of a germanium-doped tin halide perovskite film.Adding Sn^(2+)and SCN-ions reduces the Sn and iodine vacancies,limiting non-radiative recombination and favoring longer charge-carrier dynamics.Moreover,the addition of Sn(SCN)_(2) induces a higher film crystallinity and preferential orientation of the(l00)planes parallel to the substrate.The passivated devices showed improved photovoltaic parameters with the best open-circuit voltage of 0.716 V and the best efficiency of 12.22%,compared to 0.647 V and 10.2%for the reference device.In addition,the passivated solar cell retains 88.7%of its initial efficiency after 80 min of illumination under 100 mW cm^(-2) and is substantially better than the control device,which reaches 82.6%of its initial power conversion efficiency only after 30 min.This work demonstrates the passivation potential of tin-based additives,which combined with different counterions give a relatively large space of choices for passivation of Sn-based perovskites.展开更多
Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding,infrared sensors,and photovoltaic devices.However,most known materials face the cr...Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding,infrared sensors,and photovoltaic devices.However,most known materials face the critical challenge of balancing high infrared transmittance with high electrical conductivity across the broad infrared spectral band(2.5-25μm).While ultra-thin indium tin oxide(ITO)films have been demonstrated to exhibit superior infrared transmittance,their inherent low electrical conductivity necessitates additional enhancement strategies.This study systematically investigates the effects of oxygen vacancy concentration regulation and ultra-thin copper capping layer integration on the infrared optoelectronic properties of 20 nm-thick ITO films.A fundamental trade-off is revealed in ITO films that increased oxygen vacancy content enhances the electrical conductivity while compromising the infrared transmittance.Meanwhile,following the introduction of a Cu capping layer,the Cu/ITO system exhibits opposing dependencies of infrared transmittance and electrical conductivity on the capping layer thickness,with an optimum thickness of~3 nm.Finally,by constructing a Cu(3 nm)/ITO(20 nm)heterostructure with varying oxygen vacancy content,we demonstrate the combined effect of the ultra-thin Cu capping layer and moderate oxygen vacancy content on optimizing the carrier transport network.This configuration simultaneously minimizes surface/interfacial reflection and absorption losses,achieving high infrared transmittance(0.861)and a low sheet resistance of 400 W/sq.Our findings highlight the critical role of the combined effect of metal/oxide heterostructure design and defect engineering in optimizing infrared-transparent conductive properties.展开更多
Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode mate...Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode materials with both high capacity and excellent stability continues to hinder their practical viability.Herein,we couple lattice strain and sulfur deficiency effects in a tin monosulfide/reduced graphene oxide composite to enhance sodium storage performance.Experimental results and theoretical calculations reveal that the synergistic effects of lattice strain and sulfur vacancies in tin monosulfide promote rapid(de)intercalation near the surface/edge of the material,thereby enhancing its pseudocapacitive sodium storage properties.Consequently,the strained and defective tin monosulfide/reduced graphene oxide composite demonstrates a high reversible capacity of 511.82 mAh g^(-1) at 1 A g^(-1) and an outstanding rate capability of 450.60 mAh g^(-1) at 3 A g^(-1).This study offers an effective strategy for improving sodium storage performance through lattice strain and defect engineering.展开更多
An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The...An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The CuOx/Cu buffer layer limits the operating current density obviously, while the brightness and efficiency are both enhanced greatly. The highest brightness of the optimized device is achieved to be 14 000 cd/m2 at current efficiency of 3 cd/A and bias voltage of 15 V, which is about 50% higher than that of the compared device without CuOJCu buffer layer. The highest efficiency is achieved to be 5.9 cd/A at 11.6 V with 3 400 cd/m^2, which is almost twice as high as that of the compared device.展开更多
Niobium-doped indium tin oxide (ITO:Nb) thin films are fabricated on glass substrates by radio frequency (RF) magnetron sputtering at different temperatures. Structural, electrical and optical properties of the f...Niobium-doped indium tin oxide (ITO:Nb) thin films are fabricated on glass substrates by radio frequency (RF) magnetron sputtering at different temperatures. Structural, electrical and optical properties of the films are investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-VIS) spectroscopy and electrical measurements. XRD patterns show that the preferential orientation ofpolycrystalline structure changes from (400) to (222) crystal plane, and the crystallite size increases with the increase of substrate temperature. AFM analyses reveal that the film is very smooth at low temperature. The root mean square (RMS) roughness and the average roughness are 2.16 nm and 1.64 nm, respectively. The obtained lowest resistivity of the films is 1.2 × 10^4 Ω-cm, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 16.5 cmVV.s and 1.88× 10^21 cm^-3, respectively. Band gap energy of the films depends on substrate temperature, which is varied from 3.49 eV to 3.63 eV.展开更多
Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is f...Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is favorable for the accurate adjustment of pH value of Na2SnO3 solution.Stannate salt is stable,cheap and easy in operation.The effects of Na2SnO3concentration,CTAB concentration,aging temperature,and aging time on the nanociystals were studied.It was found that,with the increasing Na2SnO3 concentration,aging temperature and aging time,SnO2 nanociystals size decreases.The formation of SnO2nanociystals can be interpreted by electrostatic-interaction mechanism.SnO2 nanociystals show high photocatalytic activities in the degradation of Rhodamine B solution.The catalytic activity of small nanocrystals is higher than that of large ones.展开更多
Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-li...Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.展开更多
Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐p...Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4&#183;H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4&#183;H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4&#183;H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.展开更多
The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precip...The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precipitation and shaped into an ITO green compact with a relative density of 60% by CIP under 300 MPa. Then, an ITO target with a relative density larger than 99.6% was obtained by sintering this green compact at 1550℃ for 8 h. The effects of forming pressure, sintering temperature and sintering time on the density of the target were inves- tigated. Also, a discussion was made on the sintering atmosphere.展开更多
Indium tin oxide (ITO) nanoparticles with crystallite size of 12.6 nm and specific surface area of 45.7 m 2 ·g-1 were synthesized by co-precipitation method.The indium solution was obtained by dissolving metal ...Indium tin oxide (ITO) nanoparticles with crystallite size of 12.6 nm and specific surface area of 45.7 m 2 ·g-1 were synthesized by co-precipitation method.The indium solution was obtained by dissolving metal indium in HNO3.The tin solution was obtained by dissolving metal tin in HNO3 and followed by stabilizing with citric acid.The free of chlorine ions in the synthesis process brought several advantages:shortening the synthesis time,decreasing the particle agglomeration,decreasing the chlorine content in the ITO nanoparticles and improving the particle sinterability.This is the first time to report the synthesis of ITO nanoparticles free from chlorine contamination without using the expensive metal alkoxides as starting materials.展开更多
Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The...Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.展开更多
Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions....Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions. The co-precipitation conditions were investigated. The results show that the co-precipitate of Ag2C2O4 and Sn(OH)4 is available when the pH value of the solution is 4.27-8.36. Using the obtained precipitate as precursor,the reduction of Ag+ and the crystallization of tin oxide were carried out simultaneously by the hydrothermal method and silver tin oxide composite powders were obtained. The composite powders were characterized by X-ray diffraction (XRD) analysis,scanning electron microscope (SEM),and energy spectrum analysis. The results show that the silver tin oxide composite powders are small with a diameter of about 2 μm and with homogeneous distribution of tin.展开更多
The lossy nature of indium tin oxide(ITO) at epsilon-near-zero(ENZ) wavelength is used to design an electrically tunable metasurface absorber. The metasurface unit cell is constructed of a circular resonator comprisin...The lossy nature of indium tin oxide(ITO) at epsilon-near-zero(ENZ) wavelength is used to design an electrically tunable metasurface absorber. The metasurface unit cell is constructed of a circular resonator comprising two ITO discs and a high dielectric constant perovskite barium strontium titanate(BST) film. The ENZ wavelength in the accumulation and depletion layers of ITO discs is controlled by applying a single bias voltage. The coupling of magnetic dipole resonance with the ENZ wavelength inside the accumulation layer of ITO film causes total absorption of reflected light. The reflection amplitude can achieve ~84 d B or ~99.99% modulation depth in the operation wavelength of 820 nm at a bias voltage of-2.5 V. Moreover, the metasurface is insensitive to the polarization of the incident light due to the circular design of resonators and the symmetrical design of bias connections.展开更多
Antimony-doped tin hydroxide colloid precipitates have been synthesized by hydrolysis of SnCl4 and SbCl3 using: (1) an ion-exchange hydrolysis to remove chlorine ions, and (2) isoamyl acetate as an azeotropic sol...Antimony-doped tin hydroxide colloid precipitates have been synthesized by hydrolysis of SnCl4 and SbCl3 using: (1) an ion-exchange hydrolysis to remove chlorine ions, and (2) isoamyl acetate as an azeotropic solvent to obviate water. The obtained dried powder is of high dispersivity without any need for further grinding. The size and dispersivity of the final particles are investigated with the aid of TG-DTA, BET, XRD and TEM. After having calcined, the antimony-doped tin oxide nanopowder possesses a tetragonal rutile structure with high dispersivity, uniform particles and low hard agglomeration.展开更多
This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium pa...This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium passivation film coated on the tinplate surface under different treatment conditions were systematically characterized using the scanning Kelvin probe technique, X-ray photoelectron spectroscopy, and X-ray diffraction. Results indicate that the use of flux reduces the porosity of tin coating, thereby favoring the uniform growth of the passivation film. Furthermore, an increase in the reflow power and quenching temperature facilitates the homogeneous distribution of the passivation film on the tinplate surface,particularly when treated with electrolytic cathodic sodium dichromate.展开更多
Indium tin oxide (ITO) thin films were prepared on alumina ceramic substrates by radio frequency magnetron sputtering. The samples were subsequently annealed in air at temperatures ranging from 500 to 1,100 ℃ for 1...Indium tin oxide (ITO) thin films were prepared on alumina ceramic substrates by radio frequency magnetron sputtering. The samples were subsequently annealed in air at temperatures ranging from 500 to 1,100 ℃ for 1 h. The influences of the annealing temperature on the microstructure and electrical properties of the ITO thin films were investigated, and the results indicate that the as-deposited ITO thin films are amorphous in nature. All samples were crystallized by annealing at 500 ~C. As the annealing temperature increases, the predominant orientation shifts from (222) to (400). The carrier concentration decreases initially and then increases when the annealing temperature rises beyond 1,000 ℃. The resistivity of the ITO thin films increases smoothly as the annealing temperature increases to just below 900 ℃. Beyond 900 ℃, however, the resistivity of the films increases sharply. The annealing temperature has a significant effect on the stability of the ITO/Pt thin film thermocouples (TFTCs). TFTCs annealed at 1,000 ℃ show improved high- temperature stability and Seebeck coefficients of up to 77.73 pV/℃.展开更多
基金financial support from the American Chemical Society Petroleum Research Fund (ACS PRF 55581-DNI5)the Institute for Critical Technology and Applied Science (ICTAS-J0663175)the NSF CBET Catalysis and Biocatalysis Program (CBET-1604984)
文摘Density functional theory calculations were used to unravel the mechanism of CO_2 electroreduction on SnO_x surfaces. Under highly reducing conditions(<-0.6 V vs. RHE), the SnO(101) surface with oxygen vacancies is likely the active phase for CO_2 reduction. We showed that the proton-electron transfer to adsorbed *CO_2 forming *OCHO, a key intermediate for producing HCOOH, is energetically more favorable than the formation of *COOH, justifying the selectivity trends observed on Sn-based electrocatalysts. With linear scaling relations, we propose the free formation energy of *CO_2 at the oxygen vacancy as the reactivity descriptor. By engineering the strain of the SnO(101) surface, the selectivity towards HCOOH can be further optimized at reduced overpotentials.
基金supported by the National Natural Science Foundation of China,National Key Research and Development Project (No.2016YFF0204402)the Program for Changjiang Scholars and Innovative Research Team in the University+1 种基金the Fundamental Research Funds for the Central Universitiesthe longterm subsidy mechanism from the Ministry of Finance and the Ministry of Education of PRC
文摘Defect engineering,especially oxygen vacancies(O-vacancies) introduction into metal oxide materials has been proved to be an effective strategy to manipulate their surface electron exchange processes.However,quantitative investigation of O-vacancies on CO2 electroreduction still remains rather ambiguous.Herein,a series of nanoporous tin oxide(SnOx) materials have been prepared by thermal treatment at various temperatures and reaction conditions.The annealing temperature dependent Ovacancies property of the SnOx was revealed and attributed to the balance tunning of the desorption of oxygen species and the continous oxidation of SnOx.The as-prepared nanoporous SnOx with 300℃treatment was found to be highest O-vacant material and showed an impressive CO2 RR activity and selectivity towards the conversion of CO2 into formic acid(up to 88.6%),and superior HCOOH incomplete current density to other samples.The ideal performance of the O-vacancies rich SnOx-300 material can be ascribed to the high delocalized electron density inducing much enhanced adsorption of CO2 with O binding and benefiting the subsequent reduction with high selectively forming of formic acid.
基金support by the National Natural Science Foundation of China(NSFC,Grant Nos.21805298,21905288,51904288)K.C.Wong Education Foundation(GJTD-2019-13)+1 种基金Ningbo major special projects of the Plan"Science and Technology Innovation 2025"(No.2018B10056,No.2019B10046)Ningbo 3315 Program。
文摘Photoelectrocatalytic(PEC)materials for harvesting solar energy can be discovered from existing photocatalytic semiconductors.Nonetheless,mixed valence tin oxides,a group of widely reported visible light active photocatalysts,can hardly be developed into efficient PEC photoelectrodes.To overcome this difficulty by clarifying its origin,two typical mixed valence tin oxides,Sn^(2+):SnO_(2) microrods and porous Sn_(3)O_(4) particles were deliberately prepared as the models.Sn^(2+):SnO_(2) microrods of less porosity exhibited a photocurrent over ten times higher than Sn_(3)O_(4) particles.Photo-electrochemical impedance spectroscopy revealed this was due to their charge kinetics difference,specifically the internal transport/-transfer responding to the morphology.Moreover,hydroxyl residuals from synthesis were found to be very inhibitive for the PEC efficiency as well,which was in coherence with our TGA and Raman spectroscopic study.These finding experimentally proved the necessity of reconsidering the surface area,crystallinity,and defects when developing photocatalysts into efficient PEC structures.
基金supported by the Ministry of Science and Higher Education of the Russian Federation under Project FENN-2024-0002.
文摘Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for productions of materials with well-defined functional properties.Pulse electrolysis,a top-down electrochemical approach,has been demonstrated to be a viable method for producing nanostructured materials with a particular efficacy in the synthesis of tin oxides.This method allows for significant control over the composition and shape of the resulting tin oxides particles by modifying the anionic composition of the aqueous electrolyte,obviating the need for additional capping agents in the synthesis process and eliminating the requirement for high-temperature post-treatments.The composition and microstructural characteristics of these oxides are found to be contingent upon the differing stabilities of tin fluoride and chloride complexes,as well as the distinct mechanisms of interaction between chloride and fluoride anions with an oxidized tin surface,which is influenced by the varying kosmotropic/chaotropic nature of these anions.The composition and microstructural characteristics of the obtained dispersed tin oxides would thus determine their potential applications as an anode material for lithium-ion batteries,as a photocatalyst,or as an oxyphilic component of a hybrid support for a platinum-containing electrocatalyst.
基金support from the Focus Group‘Next Generation Organic Photovoltaics’participating with the Dutch Institute for Fundamental Energy Research(DIFFER)(FOM130)Advanced Materials research program of the Zernike National Research Centre under the Bonus Incentive Scheme(BIS)of the Dutch Ministry for Education,Culture and Science.
文摘Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is attributed to the instability of Sn^(2+),which easily oxidizes to Sn^(4+),creating Sn vacancies and increasing the open-circuit voltage loss.In this work,we implemented tin thiocyanate(Sn(SCN)_(2))as an additive for passivating the bulk defects of a germanium-doped tin halide perovskite film.Adding Sn^(2+)and SCN-ions reduces the Sn and iodine vacancies,limiting non-radiative recombination and favoring longer charge-carrier dynamics.Moreover,the addition of Sn(SCN)_(2) induces a higher film crystallinity and preferential orientation of the(l00)planes parallel to the substrate.The passivated devices showed improved photovoltaic parameters with the best open-circuit voltage of 0.716 V and the best efficiency of 12.22%,compared to 0.647 V and 10.2%for the reference device.In addition,the passivated solar cell retains 88.7%of its initial efficiency after 80 min of illumination under 100 mW cm^(-2) and is substantially better than the control device,which reaches 82.6%of its initial power conversion efficiency only after 30 min.This work demonstrates the passivation potential of tin-based additives,which combined with different counterions give a relatively large space of choices for passivation of Sn-based perovskites.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3806300).
文摘Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding,infrared sensors,and photovoltaic devices.However,most known materials face the critical challenge of balancing high infrared transmittance with high electrical conductivity across the broad infrared spectral band(2.5-25μm).While ultra-thin indium tin oxide(ITO)films have been demonstrated to exhibit superior infrared transmittance,their inherent low electrical conductivity necessitates additional enhancement strategies.This study systematically investigates the effects of oxygen vacancy concentration regulation and ultra-thin copper capping layer integration on the infrared optoelectronic properties of 20 nm-thick ITO films.A fundamental trade-off is revealed in ITO films that increased oxygen vacancy content enhances the electrical conductivity while compromising the infrared transmittance.Meanwhile,following the introduction of a Cu capping layer,the Cu/ITO system exhibits opposing dependencies of infrared transmittance and electrical conductivity on the capping layer thickness,with an optimum thickness of~3 nm.Finally,by constructing a Cu(3 nm)/ITO(20 nm)heterostructure with varying oxygen vacancy content,we demonstrate the combined effect of the ultra-thin Cu capping layer and moderate oxygen vacancy content on optimizing the carrier transport network.This configuration simultaneously minimizes surface/interfacial reflection and absorption losses,achieving high infrared transmittance(0.861)and a low sheet resistance of 400 W/sq.Our findings highlight the critical role of the combined effect of metal/oxide heterostructure design and defect engineering in optimizing infrared-transparent conductive properties.
基金supported by the National Natural Science Foundation of China(no.22109023,no.22179022,and no.22209027)the Youth Innovation Fund of Fujian Province(no.2021J05043 and no.2022J05046)+5 种基金the National Key Research and Development Program of China(2023YFC3906300)the FuXiaQuan National Independent Innovation Demonstration Zone Collaborative Innovation Platform(no.2022-P-027)the·“Hundred Talents·Plan”of Fujian Provincethe“Top Young Talents of Young Eagle”Program of Fujian Provincethe Award Program for Fujian Minjiang Scholar Professorshipthe Talent Fund Program of Fujian Normal University.
文摘Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode materials with both high capacity and excellent stability continues to hinder their practical viability.Herein,we couple lattice strain and sulfur deficiency effects in a tin monosulfide/reduced graphene oxide composite to enhance sodium storage performance.Experimental results and theoretical calculations reveal that the synergistic effects of lattice strain and sulfur vacancies in tin monosulfide promote rapid(de)intercalation near the surface/edge of the material,thereby enhancing its pseudocapacitive sodium storage properties.Consequently,the strained and defective tin monosulfide/reduced graphene oxide composite demonstrates a high reversible capacity of 511.82 mAh g^(-1) at 1 A g^(-1) and an outstanding rate capability of 450.60 mAh g^(-1) at 3 A g^(-1).This study offers an effective strategy for improving sodium storage performance through lattice strain and defect engineering.
基金supported by the National Natural Science Foundation of China(No.61274063)
文摘An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The CuOx/Cu buffer layer limits the operating current density obviously, while the brightness and efficiency are both enhanced greatly. The highest brightness of the optimized device is achieved to be 14 000 cd/m2 at current efficiency of 3 cd/A and bias voltage of 15 V, which is about 50% higher than that of the compared device without CuOJCu buffer layer. The highest efficiency is achieved to be 5.9 cd/A at 11.6 V with 3 400 cd/m^2, which is almost twice as high as that of the compared device.
文摘Niobium-doped indium tin oxide (ITO:Nb) thin films are fabricated on glass substrates by radio frequency (RF) magnetron sputtering at different temperatures. Structural, electrical and optical properties of the films are investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-VIS) spectroscopy and electrical measurements. XRD patterns show that the preferential orientation ofpolycrystalline structure changes from (400) to (222) crystal plane, and the crystallite size increases with the increase of substrate temperature. AFM analyses reveal that the film is very smooth at low temperature. The root mean square (RMS) roughness and the average roughness are 2.16 nm and 1.64 nm, respectively. The obtained lowest resistivity of the films is 1.2 × 10^4 Ω-cm, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 16.5 cmVV.s and 1.88× 10^21 cm^-3, respectively. Band gap energy of the films depends on substrate temperature, which is varied from 3.49 eV to 3.63 eV.
基金Projects (20676016,21076024) supported by the National Natural Science Foundation of China
文摘Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is favorable for the accurate adjustment of pH value of Na2SnO3 solution.Stannate salt is stable,cheap and easy in operation.The effects of Na2SnO3concentration,CTAB concentration,aging temperature,and aging time on the nanociystals were studied.It was found that,with the increasing Na2SnO3 concentration,aging temperature and aging time,SnO2 nanociystals size decreases.The formation of SnO2nanociystals can be interpreted by electrostatic-interaction mechanism.SnO2 nanociystals show high photocatalytic activities in the degradation of Rhodamine B solution.The catalytic activity of small nanocrystals is higher than that of large ones.
基金supported by the National Natural Science Foundation of China (51320105001, 51372190, 21573170, 51272199, 21433007)the National Basic Research Program of China (973 program, 2013CB632402)+2 种基金the Natural Science Foundation of Hubei Province (2015CFA001)the Fundamental Research Funds for the Central Universities (WUT: 2015-Ⅲ-034)Innovative Research Funds of SKLWUT (2015-ZD-1)~~
文摘Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.
基金supported by the National Natural Science Foundation of China (21373259, 21301107)the Hundred Talents Project of the Chinese Academy of Sciences, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030102)+2 种基金the Open Funding from Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciencesthe Fundamental Research Fund-ing of Shandong University (2014JC005)the Taishan Scholar Project of Shandong Province (China)~~
文摘Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4&#183;H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4&#183;H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4&#183;H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.
基金supported by the National High-Tech Research and Development Program of China(No. 2004AA303542)
文摘The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precipitation and shaped into an ITO green compact with a relative density of 60% by CIP under 300 MPa. Then, an ITO target with a relative density larger than 99.6% was obtained by sintering this green compact at 1550℃ for 8 h. The effects of forming pressure, sintering temperature and sintering time on the density of the target were inves- tigated. Also, a discussion was made on the sintering atmosphere.
基金supported by the Ph.D. programs Foundation of Ministry of Education of China (No.200802511022)
文摘Indium tin oxide (ITO) nanoparticles with crystallite size of 12.6 nm and specific surface area of 45.7 m 2 ·g-1 were synthesized by co-precipitation method.The indium solution was obtained by dissolving metal indium in HNO3.The tin solution was obtained by dissolving metal tin in HNO3 and followed by stabilizing with citric acid.The free of chlorine ions in the synthesis process brought several advantages:shortening the synthesis time,decreasing the particle agglomeration,decreasing the chlorine content in the ITO nanoparticles and improving the particle sinterability.This is the first time to report the synthesis of ITO nanoparticles free from chlorine contamination without using the expensive metal alkoxides as starting materials.
基金financially supported by Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2016-3)the National Key Research and Development Program of China (2016YFB0600901)the Instrument Developing Project of the Chinese Academy of Sciences
文摘Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.
文摘Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions. The co-precipitation conditions were investigated. The results show that the co-precipitate of Ag2C2O4 and Sn(OH)4 is available when the pH value of the solution is 4.27-8.36. Using the obtained precipitate as precursor,the reduction of Ag+ and the crystallization of tin oxide were carried out simultaneously by the hydrothermal method and silver tin oxide composite powders were obtained. The composite powders were characterized by X-ray diffraction (XRD) analysis,scanning electron microscope (SEM),and energy spectrum analysis. The results show that the silver tin oxide composite powders are small with a diameter of about 2 μm and with homogeneous distribution of tin.
基金supported by the Agency for Science, Technology and Research (A*STAR) under AME IRG Grant No. A2083c0058AME IAF-PP Grant No. 182 24 30030+1 种基金HBMS IAF-PP Grant No. H19H6a0025by MOE Tier 3 program LUNI170919a PUBMOE。
文摘The lossy nature of indium tin oxide(ITO) at epsilon-near-zero(ENZ) wavelength is used to design an electrically tunable metasurface absorber. The metasurface unit cell is constructed of a circular resonator comprising two ITO discs and a high dielectric constant perovskite barium strontium titanate(BST) film. The ENZ wavelength in the accumulation and depletion layers of ITO discs is controlled by applying a single bias voltage. The coupling of magnetic dipole resonance with the ENZ wavelength inside the accumulation layer of ITO film causes total absorption of reflected light. The reflection amplitude can achieve ~84 d B or ~99.99% modulation depth in the operation wavelength of 820 nm at a bias voltage of-2.5 V. Moreover, the metasurface is insensitive to the polarization of the incident light due to the circular design of resonators and the symmetrical design of bias connections.
基金National Natural Science Foundation of China (50533060)
文摘Antimony-doped tin hydroxide colloid precipitates have been synthesized by hydrolysis of SnCl4 and SbCl3 using: (1) an ion-exchange hydrolysis to remove chlorine ions, and (2) isoamyl acetate as an azeotropic solvent to obviate water. The obtained dried powder is of high dispersivity without any need for further grinding. The size and dispersivity of the final particles are investigated with the aid of TG-DTA, BET, XRD and TEM. After having calcined, the antimony-doped tin oxide nanopowder possesses a tetragonal rutile structure with high dispersivity, uniform particles and low hard agglomeration.
文摘This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium passivation film coated on the tinplate surface under different treatment conditions were systematically characterized using the scanning Kelvin probe technique, X-ray photoelectron spectroscopy, and X-ray diffraction. Results indicate that the use of flux reduces the porosity of tin coating, thereby favoring the uniform growth of the passivation film. Furthermore, an increase in the reflow power and quenching temperature facilitates the homogeneous distribution of the passivation film on the tinplate surface,particularly when treated with electrolytic cathodic sodium dichromate.
基金financially supported by the National Natural Science Foundation of China (No.61223002)the State Key Laboratory of Electronic Thin Films and Integrated Devices Foundation of China (No.KFJJ201206)Science and Technology Innovation Foundation of Sichuan (No.2012ZZ020)
文摘Indium tin oxide (ITO) thin films were prepared on alumina ceramic substrates by radio frequency magnetron sputtering. The samples were subsequently annealed in air at temperatures ranging from 500 to 1,100 ℃ for 1 h. The influences of the annealing temperature on the microstructure and electrical properties of the ITO thin films were investigated, and the results indicate that the as-deposited ITO thin films are amorphous in nature. All samples were crystallized by annealing at 500 ~C. As the annealing temperature increases, the predominant orientation shifts from (222) to (400). The carrier concentration decreases initially and then increases when the annealing temperature rises beyond 1,000 ℃. The resistivity of the ITO thin films increases smoothly as the annealing temperature increases to just below 900 ℃. Beyond 900 ℃, however, the resistivity of the films increases sharply. The annealing temperature has a significant effect on the stability of the ITO/Pt thin film thermocouples (TFTCs). TFTCs annealed at 1,000 ℃ show improved high- temperature stability and Seebeck coefficients of up to 77.73 pV/℃.