期刊文献+
共找到177篇文章
< 1 2 9 >
每页显示 20 50 100
Insights into electrochemical CO_2 reduction on tin oxides from first-principles calculations
1
作者 Siwen Wang Jiamin Wang Hongliang Xin 《Green Energy & Environment》 SCIE 2017年第2期168-171,共4页
Density functional theory calculations were used to unravel the mechanism of CO_2 electroreduction on SnO_x surfaces. Under highly reducing conditions(<-0.6 V vs. RHE), the SnO(101) surface with oxygen vacancies is... Density functional theory calculations were used to unravel the mechanism of CO_2 electroreduction on SnO_x surfaces. Under highly reducing conditions(<-0.6 V vs. RHE), the SnO(101) surface with oxygen vacancies is likely the active phase for CO_2 reduction. We showed that the proton-electron transfer to adsorbed *CO_2 forming *OCHO, a key intermediate for producing HCOOH, is energetically more favorable than the formation of *COOH, justifying the selectivity trends observed on Sn-based electrocatalysts. With linear scaling relations, we propose the free formation energy of *CO_2 at the oxygen vacancy as the reactivity descriptor. By engineering the strain of the SnO(101) surface, the selectivity towards HCOOH can be further optimized at reduced overpotentials. 展开更多
关键词 CO2 electroreduction tin oxides Strain effect Scaling relations Density functional theory
在线阅读 下载PDF
Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides 被引量:5
2
作者 Tengfei Gao Anuj Kumar +8 位作者 Zhicheng Shang Xinxuan Duan Hangchao Wang Shiyuan Wang Shengfu Ji Dongpeng Yan Liang Luo Wen Liu Xiaoming Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2274-2278,共5页
Defect engineering,especially oxygen vacancies(O-vacancies) introduction into metal oxide materials has been proved to be an effective strategy to manipulate their surface electron exchange processes.However,quantitat... Defect engineering,especially oxygen vacancies(O-vacancies) introduction into metal oxide materials has been proved to be an effective strategy to manipulate their surface electron exchange processes.However,quantitative investigation of O-vacancies on CO2 electroreduction still remains rather ambiguous.Herein,a series of nanoporous tin oxide(SnOx) materials have been prepared by thermal treatment at various temperatures and reaction conditions.The annealing temperature dependent Ovacancies property of the SnOx was revealed and attributed to the balance tunning of the desorption of oxygen species and the continous oxidation of SnOx.The as-prepared nanoporous SnOx with 300℃treatment was found to be highest O-vacant material and showed an impressive CO2 RR activity and selectivity towards the conversion of CO2 into formic acid(up to 88.6%),and superior HCOOH incomplete current density to other samples.The ideal performance of the O-vacancies rich SnOx-300 material can be ascribed to the high delocalized electron density inducing much enhanced adsorption of CO2 with O binding and benefiting the subsequent reduction with high selectively forming of formic acid. 展开更多
关键词 Oxygen vacancies Electrochemical CO2 reduction tin oxide FORMATE SELECTIVITY
原文传递
Structural limiting factors of mixed-valent tin oxides in photoelectrochemical application:A comparative exploration
3
作者 Yalong Zou Deyu Liu +6 位作者 Xiangrui Meng Qitao Liu Yang Zhou Jianming Li Zhiying Zhao Ding Chen Yongbo Kuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期504-511,共8页
Photoelectrocatalytic(PEC)materials for harvesting solar energy can be discovered from existing photocatalytic semiconductors.Nonetheless,mixed valence tin oxides,a group of widely reported visible light active photoc... Photoelectrocatalytic(PEC)materials for harvesting solar energy can be discovered from existing photocatalytic semiconductors.Nonetheless,mixed valence tin oxides,a group of widely reported visible light active photocatalysts,can hardly be developed into efficient PEC photoelectrodes.To overcome this difficulty by clarifying its origin,two typical mixed valence tin oxides,Sn^(2+):SnO_(2) microrods and porous Sn_(3)O_(4) particles were deliberately prepared as the models.Sn^(2+):SnO_(2) microrods of less porosity exhibited a photocurrent over ten times higher than Sn_(3)O_(4) particles.Photo-electrochemical impedance spectroscopy revealed this was due to their charge kinetics difference,specifically the internal transport/-transfer responding to the morphology.Moreover,hydroxyl residuals from synthesis were found to be very inhibitive for the PEC efficiency as well,which was in coherence with our TGA and Raman spectroscopic study.These finding experimentally proved the necessity of reconsidering the surface area,crystallinity,and defects when developing photocatalysts into efficient PEC structures. 展开更多
关键词 Mixed-valence tin oxide Photoelectrochemical water splitting NANOSTRUCTURE
在线阅读 下载PDF
New Insights into Controlling the Functional Properties of Tin Oxide-Based Materials
4
作者 Alexandra Kuriganova Nina Smirnova 《电化学(中英文)》 北大核心 2025年第1期41-56,共16页
Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for ... Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for productions of materials with well-defined functional properties.Pulse electrolysis,a top-down electrochemical approach,has been demonstrated to be a viable method for producing nanostructured materials with a particular efficacy in the synthesis of tin oxides.This method allows for significant control over the composition and shape of the resulting tin oxides particles by modifying the anionic composition of the aqueous electrolyte,obviating the need for additional capping agents in the synthesis process and eliminating the requirement for high-temperature post-treatments.The composition and microstructural characteristics of these oxides are found to be contingent upon the differing stabilities of tin fluoride and chloride complexes,as well as the distinct mechanisms of interaction between chloride and fluoride anions with an oxidized tin surface,which is influenced by the varying kosmotropic/chaotropic nature of these anions.The composition and microstructural characteristics of the obtained dispersed tin oxides would thus determine their potential applications as an anode material for lithium-ion batteries,as a photocatalyst,or as an oxyphilic component of a hybrid support for a platinum-containing electrocatalyst. 展开更多
关键词 tin oxide Pulse electrolysis Lithium-ion battery PHOTOCATALYSIS Fuel cell
在线阅读 下载PDF
Bulk Defects Passivation of Tin Halide Perovskite by Tin Thiocyanate
5
作者 Matteo Pitaro Lorenzo Di Mario +7 位作者 Jacopo Pinna Diego AAcevedo-Guzmán Marios Neophytou Mindaugas Kirkus Thomas DAnthopoulos Giuseppe Portale Petra Rudolf Maria Antonietta Loi 《Carbon Energy》 2025年第6期101-109,共9页
Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is... Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is attributed to the instability of Sn^(2+),which easily oxidizes to Sn^(4+),creating Sn vacancies and increasing the open-circuit voltage loss.In this work,we implemented tin thiocyanate(Sn(SCN)_(2))as an additive for passivating the bulk defects of a germanium-doped tin halide perovskite film.Adding Sn^(2+)and SCN-ions reduces the Sn and iodine vacancies,limiting non-radiative recombination and favoring longer charge-carrier dynamics.Moreover,the addition of Sn(SCN)_(2) induces a higher film crystallinity and preferential orientation of the(l00)planes parallel to the substrate.The passivated devices showed improved photovoltaic parameters with the best open-circuit voltage of 0.716 V and the best efficiency of 12.22%,compared to 0.647 V and 10.2%for the reference device.In addition,the passivated solar cell retains 88.7%of its initial efficiency after 80 min of illumination under 100 mW cm^(-2) and is substantially better than the control device,which reaches 82.6%of its initial power conversion efficiency only after 30 min.This work demonstrates the passivation potential of tin-based additives,which combined with different counterions give a relatively large space of choices for passivation of Sn-based perovskites. 展开更多
关键词 additives solar cells tin halide perovskite tin oxidation tin thiocyanate trap passivation
在线阅读 下载PDF
Combined effects of oxygen vacancy and copper capping layer on infrared-transparent conductive properties of indium tin oxide films
6
作者 Zhuang Ni Hu Wang +6 位作者 Han-Jun Hu Lan-Xi Wang Hu-Lin Zhang Kun Li Ying He Hua-Ping Zuo Yan-Chun He 《Chinese Physics B》 2025年第8期772-781,共10页
Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding,infrared sensors,and photovoltaic devices.However,most known materials face the cr... Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding,infrared sensors,and photovoltaic devices.However,most known materials face the critical challenge of balancing high infrared transmittance with high electrical conductivity across the broad infrared spectral band(2.5-25μm).While ultra-thin indium tin oxide(ITO)films have been demonstrated to exhibit superior infrared transmittance,their inherent low electrical conductivity necessitates additional enhancement strategies.This study systematically investigates the effects of oxygen vacancy concentration regulation and ultra-thin copper capping layer integration on the infrared optoelectronic properties of 20 nm-thick ITO films.A fundamental trade-off is revealed in ITO films that increased oxygen vacancy content enhances the electrical conductivity while compromising the infrared transmittance.Meanwhile,following the introduction of a Cu capping layer,the Cu/ITO system exhibits opposing dependencies of infrared transmittance and electrical conductivity on the capping layer thickness,with an optimum thickness of~3 nm.Finally,by constructing a Cu(3 nm)/ITO(20 nm)heterostructure with varying oxygen vacancy content,we demonstrate the combined effect of the ultra-thin Cu capping layer and moderate oxygen vacancy content on optimizing the carrier transport network.This configuration simultaneously minimizes surface/interfacial reflection and absorption losses,achieving high infrared transmittance(0.861)and a low sheet resistance of 400 W/sq.Our findings highlight the critical role of the combined effect of metal/oxide heterostructure design and defect engineering in optimizing infrared-transparent conductive properties. 展开更多
关键词 infrared-transparent conductor indium tin oxide ultra-thin Cu capping layer oxygen vacancy
原文传递
Coupling Lattice Strain and Sulfur Vacancy in Tin Monosulfide/Reduced Graphene Oxide Composite for High-Performance Sodium-Ion Storage
7
作者 Yitong Jiang Yihong Zheng +8 位作者 Lijuan Tong Kun Zuo Mulan Tu Shihong Chen Xiaochuan Chen Junxiong Wu Qinghua Chen Xiaoyan Li Yuming Chen 《Energy & Environmental Materials》 2025年第4期87-94,共8页
Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode mate... Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode materials with both high capacity and excellent stability continues to hinder their practical viability.Herein,we couple lattice strain and sulfur deficiency effects in a tin monosulfide/reduced graphene oxide composite to enhance sodium storage performance.Experimental results and theoretical calculations reveal that the synergistic effects of lattice strain and sulfur vacancies in tin monosulfide promote rapid(de)intercalation near the surface/edge of the material,thereby enhancing its pseudocapacitive sodium storage properties.Consequently,the strained and defective tin monosulfide/reduced graphene oxide composite demonstrates a high reversible capacity of 511.82 mAh g^(-1) at 1 A g^(-1) and an outstanding rate capability of 450.60 mAh g^(-1) at 3 A g^(-1).This study offers an effective strategy for improving sodium storage performance through lattice strain and defect engineering. 展开更多
关键词 coupling effects lattice strain sodium-ion batteries sulfur defects tin monosulfide/reduced graphene oxide composites
在线阅读 下载PDF
High efficiency organic light-emitting diodes using CuO_x/Cu dual buffer layers 被引量:3
8
作者 陈征 邓振波 《Optoelectronics Letters》 EI 2015年第3期187-190,共4页
An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The... An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The CuOx/Cu buffer layer limits the operating current density obviously, while the brightness and efficiency are both enhanced greatly. The highest brightness of the optimized device is achieved to be 14 000 cd/m2 at current efficiency of 3 cd/A and bias voltage of 15 V, which is about 50% higher than that of the compared device without CuOJCu buffer layer. The highest efficiency is achieved to be 5.9 cd/A at 11.6 V with 3 400 cd/m^2, which is almost twice as high as that of the compared device. 展开更多
关键词 Buffer layers Efficiency Electronic equipment Light emitting diodes LUMINANCE Optical waveguides tin oxides
原文传递
Preparation and characteristics of Nb-doped indium tin oxide thin films by RF magnetron sputtering 被引量:1
9
作者 李士娜 马瑞新 +3 位作者 贺梁伟 肖玉琴 侯军刚 焦树强 《Optoelectronics Letters》 EI 2012年第6期460-463,共4页
Niobium-doped indium tin oxide (ITO:Nb) thin films are fabricated on glass substrates by radio frequency (RF) magnetron sputtering at different temperatures. Structural, electrical and optical properties of the f... Niobium-doped indium tin oxide (ITO:Nb) thin films are fabricated on glass substrates by radio frequency (RF) magnetron sputtering at different temperatures. Structural, electrical and optical properties of the films are investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-VIS) spectroscopy and electrical measurements. XRD patterns show that the preferential orientation ofpolycrystalline structure changes from (400) to (222) crystal plane, and the crystallite size increases with the increase of substrate temperature. AFM analyses reveal that the film is very smooth at low temperature. The root mean square (RMS) roughness and the average roughness are 2.16 nm and 1.64 nm, respectively. The obtained lowest resistivity of the films is 1.2 × 10^4 Ω-cm, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 16.5 cmVV.s and 1.88× 10^21 cm^-3, respectively. Band gap energy of the films depends on substrate temperature, which is varied from 3.49 eV to 3.63 eV. 展开更多
关键词 Atomic force microscopy Electric properties Indium compounds Magnetron sputtering NIOBIUM Optical properties Substrates Thin films tin tin oxides X ray diffraction
原文传递
Facile synthesis of tin oxide nanocrystals and their photocatalytic activity
10
作者 贾志谦 孙慧杰 +2 位作者 王妍 甄甜丽 常青 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1813-1818,共6页
Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is f... Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is favorable for the accurate adjustment of pH value of Na2SnO3 solution.Stannate salt is stable,cheap and easy in operation.The effects of Na2SnO3concentration,CTAB concentration,aging temperature,and aging time on the nanociystals were studied.It was found that,with the increasing Na2SnO3 concentration,aging temperature and aging time,SnO2 nanociystals size decreases.The formation of SnO2nanociystals can be interpreted by electrostatic-interaction mechanism.SnO2 nanociystals show high photocatalytic activities in the degradation of Rhodamine B solution.The catalytic activity of small nanocrystals is higher than that of large ones. 展开更多
关键词 tin oxide nanocrystals facile synthesis photocatalytic activity
在线阅读 下载PDF
Effects of hierarchical structure on the performance of tin oxide-supported platinum catalyst for room-temperature formaldehyde oxidation 被引量:6
11
作者 段媛媛 宋少青 +2 位作者 程蓓 余家国 姜传佳 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期199-206,共8页
Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-li... Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature. 展开更多
关键词 Formaldehyde catalytic oxidation Room temperature tin oxide PLAtinUM Hierarchical structure FLOWER-LIKE
在线阅读 下载PDF
Support effect of zinc tin oxide on gold catalyst for CO oxidation reaction
12
作者 李威 杜林颖 +1 位作者 贾春江 司锐 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1702-1711,共10页
Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐p... Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4&#183;H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4&#183;H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4&#183;H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation. 展开更多
关键词 Gold catalyst Zinc tin oxide Carbon monoxide oxidation X-ray absorption fine structure Structure-activity relationship
在线阅读 下载PDF
Preparation of indium tin oxide targets with a high density and single phase structure by normal pressure sintering process 被引量:10
13
作者 LIU Chen LIU Jiaxiang WANG Yue 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期126-130,共5页
The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precip... The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precipitation and shaped into an ITO green compact with a relative density of 60% by CIP under 300 MPa. Then, an ITO target with a relative density larger than 99.6% was obtained by sintering this green compact at 1550℃ for 8 h. The effects of forming pressure, sintering temperature and sintering time on the density of the target were inves- tigated. Also, a discussion was made on the sintering atmosphere. 展开更多
关键词 thin films indium tin oxide (ITO) isostatic pressing SINTERING relative density microstructure
在线阅读 下载PDF
A Cost-Effective Co-precipitation Method for Synthesizing Indium Tin Oxide Nanoparticles without Chlorine Contamination 被引量:8
14
作者 Haiwen Wang Xiujuan Xu +1 位作者 Jianrong Zhang Chunzhong Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第11期1037-1040,共4页
Indium tin oxide (ITO) nanoparticles with crystallite size of 12.6 nm and specific surface area of 45.7 m 2 ·g-1 were synthesized by co-precipitation method.The indium solution was obtained by dissolving metal ... Indium tin oxide (ITO) nanoparticles with crystallite size of 12.6 nm and specific surface area of 45.7 m 2 ·g-1 were synthesized by co-precipitation method.The indium solution was obtained by dissolving metal indium in HNO3.The tin solution was obtained by dissolving metal tin in HNO3 and followed by stabilizing with citric acid.The free of chlorine ions in the synthesis process brought several advantages:shortening the synthesis time,decreasing the particle agglomeration,decreasing the chlorine content in the ITO nanoparticles and improving the particle sinterability.This is the first time to report the synthesis of ITO nanoparticles free from chlorine contamination without using the expensive metal alkoxides as starting materials. 展开更多
关键词 NANOMATERIALS Powder technology Indium tin oxide Coprecipitation method
原文传递
Nitrogen doped tin oxide nanostructured catalysts for selective electrochemical reduction of carbon dioxide to formate 被引量:4
15
作者 Qiankun Li Zhuo Wang +2 位作者 Miao Zhang Pengfei Hou Peng Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期825-829,共5页
Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The... Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis. 展开更多
关键词 CO2 reduction ELECTROCATALYSIS FORMATE tin oxide Nitrogen doping
在线阅读 下载PDF
Preparation of silver tin oxide powders by hydrothermal reduction and crystallization 被引量:4
16
作者 DU Zuojuan YANG Tianzu +2 位作者 GU Yingying QIU Xiaoyong DOU Aichun 《Rare Metals》 SCIE EI CAS CSCD 2007年第5期470-475,共6页
Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions.... Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions. The co-precipitation conditions were investigated. The results show that the co-precipitate of Ag2C2O4 and Sn(OH)4 is available when the pH value of the solution is 4.27-8.36. Using the obtained precipitate as precursor,the reduction of Ag+ and the crystallization of tin oxide were carried out simultaneously by the hydrothermal method and silver tin oxide composite powders were obtained. The composite powders were characterized by X-ray diffraction (XRD) analysis,scanning electron microscope (SEM),and energy spectrum analysis. The results show that the silver tin oxide composite powders are small with a diameter of about 2 μm and with homogeneous distribution of tin. 展开更多
关键词 composite material silver tin oxide hydrothermal method CO-PRECIPITATION
在线阅读 下载PDF
Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances 被引量:8
17
作者 Arash Nemati Qian Wang +3 位作者 Norman Soo Seng Ang Weide Wang Minghui Hong Jinghua Teng 《Opto-Electronic Advances》 SCIE 2021年第7期22-32,共11页
The lossy nature of indium tin oxide(ITO) at epsilon-near-zero(ENZ) wavelength is used to design an electrically tunable metasurface absorber. The metasurface unit cell is constructed of a circular resonator comprisin... The lossy nature of indium tin oxide(ITO) at epsilon-near-zero(ENZ) wavelength is used to design an electrically tunable metasurface absorber. The metasurface unit cell is constructed of a circular resonator comprising two ITO discs and a high dielectric constant perovskite barium strontium titanate(BST) film. The ENZ wavelength in the accumulation and depletion layers of ITO discs is controlled by applying a single bias voltage. The coupling of magnetic dipole resonance with the ENZ wavelength inside the accumulation layer of ITO film causes total absorption of reflected light. The reflection amplitude can achieve ~84 d B or ~99.99% modulation depth in the operation wavelength of 820 nm at a bias voltage of-2.5 V. Moreover, the metasurface is insensitive to the polarization of the incident light due to the circular design of resonators and the symmetrical design of bias connections. 展开更多
关键词 metasurface electrically tunable indium tin oxide(ITO) epsilon-near-zero(ENZ) barium strontium titanate(BST) polarization-insensitive
在线阅读 下载PDF
Preparation of Highly Dispersed Antimony-doped Tin Oxide Nano-powder via Ion-exchange Hydrolysis of SnCl_4 and SbCl_3 and Azeotropic Drying 被引量:3
18
作者 YANG Fen ZHANG Xue-jun +2 位作者 TIAN Fang WU Xu GAN Fu-xing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第2期181-186,共6页
Antimony-doped tin hydroxide colloid precipitates have been synthesized by hydrolysis of SnCl4 and SbCl3 using: (1) an ion-exchange hydrolysis to remove chlorine ions, and (2) isoamyl acetate as an azeotropic sol... Antimony-doped tin hydroxide colloid precipitates have been synthesized by hydrolysis of SnCl4 and SbCl3 using: (1) an ion-exchange hydrolysis to remove chlorine ions, and (2) isoamyl acetate as an azeotropic solvent to obviate water. The obtained dried powder is of high dispersivity without any need for further grinding. The size and dispersivity of the final particles are investigated with the aid of TG-DTA, BET, XRD and TEM. After having calcined, the antimony-doped tin oxide nanopowder possesses a tetragonal rutile structure with high dispersivity, uniform particles and low hard agglomeration. 展开更多
关键词 antimony-dopod tin oxide ion-exchange iso-amyl acetate dispcrsivity
在线阅读 下载PDF
Influence of reflow processing conditions on the uniformity of the chromium passivation film on tinplate 被引量:5
19
作者 XIE Long CHEN Hongxing XIE Yingxiu 《Baosteel Technical Research》 CAS 2014年第2期41-45,共5页
This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium pa... This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium passivation film coated on the tinplate surface under different treatment conditions were systematically characterized using the scanning Kelvin probe technique, X-ray photoelectron spectroscopy, and X-ray diffraction. Results indicate that the use of flux reduces the porosity of tin coating, thereby favoring the uniform growth of the passivation film. Furthermore, an increase in the reflow power and quenching temperature facilitates the homogeneous distribution of the passivation film on the tinplate surface,particularly when treated with electrolytic cathodic sodium dichromate. 展开更多
关键词 chromium passivation film tinPLATE UNIFORMITY tin oxide
在线阅读 下载PDF
Influence of Annealing Temperature on the Microstructure and Electrical Properties of Indium Tin Oxide Thin Films 被引量:3
20
作者 Yinzhi Chen Hongchuan Jiang +3 位作者 Shuwen Jiang Xingzhao Liu Wanli Zhang Qinyong Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第2期368-372,共5页
Indium tin oxide (ITO) thin films were prepared on alumina ceramic substrates by radio frequency magnetron sputtering. The samples were subsequently annealed in air at temperatures ranging from 500 to 1,100 ℃ for 1... Indium tin oxide (ITO) thin films were prepared on alumina ceramic substrates by radio frequency magnetron sputtering. The samples were subsequently annealed in air at temperatures ranging from 500 to 1,100 ℃ for 1 h. The influences of the annealing temperature on the microstructure and electrical properties of the ITO thin films were investigated, and the results indicate that the as-deposited ITO thin films are amorphous in nature. All samples were crystallized by annealing at 500 ~C. As the annealing temperature increases, the predominant orientation shifts from (222) to (400). The carrier concentration decreases initially and then increases when the annealing temperature rises beyond 1,000 ℃. The resistivity of the ITO thin films increases smoothly as the annealing temperature increases to just below 900 ℃. Beyond 900 ℃, however, the resistivity of the films increases sharply. The annealing temperature has a significant effect on the stability of the ITO/Pt thin film thermocouples (TFTCs). TFTCs annealed at 1,000 ℃ show improved high- temperature stability and Seebeck coefficients of up to 77.73 pV/℃. 展开更多
关键词 Indium tin oxide Thin film Annealing treatment
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部