The intersection of economic development,energy dynamics,environmental policy,and environmental sustainability presents complex challenges for European Union(EU)countries.This study investigatedthe impact of environme...The intersection of economic development,energy dynamics,environmental policy,and environmental sustainability presents complex challenges for European Union(EU)countries.This study investigatedthe impact of environmental taxes,hydroelectricity consumption,economic globalization,and gross domestic product(GDP)on the load capacity factor(LCF)in the 10 EU member countries(including Austria,Finland,France,Germany,Italy,Poland,Portugal,Slovakia,Spain,and Sweden)using data from 1995 to 2020.To ensure the reliability and validity of the data,this study applied several advanced econometric tests,including the Pesaran and Yamagata slopeheterogeneitytest,Pesaran cross-sectional dependence(CSD)test,second-generation unit root test,and Westerlund cointegration test.The data showed important statistical issues such as slope heterogeneityacross panels,CSD,mixed-orderunit root structures,and long-run associations between variables.To address these issues,we applied an augmented mean group(AMG)model as the main regression approach,andusedthe pooled mean group-autoregressive distributed lag(PMG-ARDL)method to check the robustness.Specifically,the AMG results indicate that a 1.000%rise in hydroelectricity consumptionresults in a 0.048% rise in the LCF,while a 1.000% increase in environmental taxes leads toa 0.175% increase in the LCF.Contrary to this,a 1.000% increase in economic globalization results in a 0.370% decrease in the LCF,and a 1.000% increase in GDP leads toa 0.850% decrease in the LCF.Environmental taxes have a more beneficial impact on the environment,and GDP has the most detrimental effect.The findings provide empirical evidence on the role of environmental taxes,hydroelectricity consumption,economic globalization,and GDP in driving the LCF.Additionally,the findings provide valuable information to policy-makers,academicians,and stakeholders shaping energy and environmental policies in the 10 EU member countries.展开更多
Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- a...Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.展开更多
Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temper...Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.展开更多
Large goods transported in railway are kinds of special goods and they are very important in national construction. In order to transport safely, loading and reinforcing schemes must be made first. How to design a rea...Large goods transported in railway are kinds of special goods and they are very important in national construction. In order to transport safely, loading and reinforcing schemes must be made first. How to design a reasonable scheme will be affected by many factors. This paper presents the characteristic of the large goods, summarizes the process of designing a loading and reinforcing scheme of large good, then probes the factors of affecting the loading and reinforcing scheme and gives a detail analysis. It’s considered that those out-of-gauge and overweight degree of goods, center-of- gravity height of a loaded wagon, position of center-of-gravity of goods, type of wagon for using, reinforcement material and reinforcement method, transport expense and transport organization could affect a scheme in the aspects of safety, economy, rapidity and convenience. This conclusion will instruct and help to make a good scheme.展开更多
The solution of surface displacement of an elliptical crack under compressive-shear loading was obtained by using the complex function method. The closing mode was established by analyzing the geometrical condition of...The solution of surface displacement of an elliptical crack under compressive-shear loading was obtained by using the complex function method. The closing mode was established by analyzing the geometrical condition of closing crack, and the corresponding critical stress was solved. The result corrects the traditional viewpoint, in which there exist only open or close states for an elliptical crack, and points out that the local closing is also one of crack states. Based on them, the effect of the closed crack on stress intensity factor was discussed in detail, and its rational formulae are put forward.展开更多
The time-varying periodic variations in Global Navigation Satellite System(GNSS)stations affect the reliable time series analysis and appropriate geophysical interpretation.In this study,we apply the singular spectrum...The time-varying periodic variations in Global Navigation Satellite System(GNSS)stations affect the reliable time series analysis and appropriate geophysical interpretation.In this study,we apply the singular spectrum analysis(SSA)method to characterize and interpret the periodic patterns of GNSS deformations in China using multiple geodetic datasets.These include 23-year observations from the Crustal Movement Observation Network of China(CMONOC),displacements inferred from the Gravity Recovery and Climate Experiment(GRACE),and loadings derived from Geophysical models(GM).The results reveal that all CMONOC time series exhibit seasonal signals characterized by amplitude and phase modulations,and the SSA method outperforms the traditional least squares fitting(LSF)method in extracting and interpreting the time-varying seasonal signals from the original time series.The decrease in the root mean square(RMS)correlates well with the annual cycle variance estimated by the SSA method,and the average reduction in noise amplitudes is nearly twice as much for SSA filtered results compared with those from the LSF method.With SSA analysis,the time-varying seasonal signals for all the selected stations can be identified in the reconstructed components corresponding to the first ten eigenvalues.Moreover,both RMS reduction and correlation analysis imply the advantages of GRACE solutions in explaining the GNSS periodic variations,and the geophysical effects can account for 71%of the GNSS annual amplitudes,and the average RMS reduction is 15%.The SSA method has proved to be useful for investigating the GNSS timevarying seasonal signals.It could be applicable as an auxiliary tool in the improvement of nonlinear variations investigations.展开更多
Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior ...Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior and time-varying meshing stiffness(TVMS)of spiral bevel gear pair with cracked tooth.The tooth is sliced,and the contact points on slices are computed using roll angle surfaces.Considering the geometric complexity of crack surface,a set of procedures is formulated to generate spatial crack and determine crack parameters for contact points.According to the positional relationship between contact point and crack path,each sliced tooth is modeled as a non-uniform cantilever beam with varying reduced effective load-bearing tooth thickness.Then the compliance model of the cracked tooth is established to perform contact analysis,along with TVMS calculations utilizing three different models.By employing spiral bevel gear pairs with distinct types of cracks as examples,the accuracy and efficiency of the developed approach are validated via comparative analyses with finite element analysis(FEA)outcomes.Furthermore,the investigation on effects of cracks shows that tooth cracks can induce alterations in meshing performance of both entire gear pair and individual tooth pairs,including not only cracked tooth pair but also adjacent non-cracked tooth pairs.Hence,the proposed model can serve as a useful tool for analyzing the variations in contact behavior and meshing stiffness of spiral bevel gears due to different cracks.展开更多
Gas explosion in confined space often leads to significant pressure oscillation.It is widely recognized that structural damage can be severe when the oscillation frequency of the load resonates with the natural vibrat...Gas explosion in confined space often leads to significant pressure oscillation.It is widely recognized that structural damage can be severe when the oscillation frequency of the load resonates with the natural vibration frequency of the structure.To reveal the oscillation mechanism of gas explosion load,the experiment of gas explosion was conducted in a large-scale confined tube with the length of 30 m,and the explosion process was numerically analyzed using FLACS.The results show that the essential cause of oscillation effect is the reflection of the pressure wave.In addition,due to the difference in the propagation path of the pressure wave,the load oscillation frequency at the middle position of the tunnel is twice that at the end position.The average sound velocity can be used to calculate the oscillation frequency of overpressure accurately,and the error is less than 15%.The instability of the flame surface and the increase of flame turbulence caused by the interaction between the pressure wave and the flame surface are the main contributors to the increase in overpressure and amplitude.The overpressure peaks calculated by the existing flame instability model and turbulence disturbance model are 31.7%and 34.7%lower than the numerical results,respectively.The turbulence factor model established in this work can describe the turbulence enhancement effect caused by flame instability and oscillatory load,and the difference between the theoretical and numerical results is only 4.6%.In the theoretical derivation of the overpressure model,an improved model of dynamic turbulence factor is established,which can describe the enhancement effect of turbulence factor caused by flame instability and self-turbulence.Based on the one-dimensional propagation theory of pressure wave,the oscillatory effect of the load is derived to calculate the frequency and amplitude of pressure oscillation.The average error of amplitude and frequency is less than 20%.展开更多
Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon ...Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems.展开更多
This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was use...This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was used to assess the material loading system performance which is one of the key components of the total cycle time for material transportation in an open-pit mine. Loading is among the components of cycle time during which material is being handled. The data analyzed?was?collected from a computerized dispatch system at GGM from which 62,000 loading dispatches per month involving several shifts, 14 excavators and 49 trucks were loaded. About 4465 dispatches per excavator and 1276 dispatches per truck were assessed using loading cycle time data for each dispatch for a period of four months (between August and December). Under fixed tonnage loaded and waste type (33 t of non-acid forming waste rock),?it was observed that loading cycle time depends on excavator model, location and truck being loaded. Average cycle times, PDFS?and CDFS of loading cycle time series were used to identify differences in performance under different situations. It was concluded that shift availability for excavators, loading location, excavator model and truck-shovel combinations strongly affect the productivity during loading process in an open-pit mine.展开更多
This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop acro...This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.展开更多
When a crack is subjected to shear force, crack branching usually occurs. Theoretical study shows that the crack branching under shear loading is caused by tensile stress, but not caused by shear fracture. The co plan...When a crack is subjected to shear force, crack branching usually occurs. Theoretical study shows that the crack branching under shear loading is caused by tensile stress, but not caused by shear fracture. The co plane shear fracture could be obtained if compressive stress with given direction is applied to the specimen, subsequently, calculated shear fracture toughness, K ⅡC , is larger than K ⅠC . A prerequisite of possible occurrence of mode Ⅱ fracture was proposed. The study of shear fracture shows that the maximum circumferential stress theory considered its criterion as a parametric equation of a curve in K Ⅰ, K Ⅱ plane is incorrect; the predicted ratio K ⅡC / K ⅠC =0.866 is incorrect too. [展开更多
Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies ...Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.展开更多
The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the rat...The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact.展开更多
Adopting the load and resistance factor design format, the design method for steel jaeket platform structures is developed. Firstly, the limit state equations and design format for steel jacket platform structures are...Adopting the load and resistance factor design format, the design method for steel jaeket platform structures is developed. Firstly, the limit state equations and design format for steel jacket platform structures are introduced. Then, the ratio of live load effect to dead load effect is estimated. The target reliabilities for design of offshore structures in China offshore area are calibrated by past practice in API RP2A-WSD code. The load and resistance factors are optimized by minimizing the difference within the target reliability and the resulting reliability over the range of load effect ratios. Considering the concurrence of different loads, load combination factors are obtained through an optimization process, and the relation between the load combination factor and load correlation coefficient is established. Finally, the design formulae for steel jacket structures in China offshore area are recommended.展开更多
Aiming at the time-varying characteristics of industrial process, this paper introduces an adaptive subspace predictive control(ASPC) strategy with time-varying forgetting factor based on the original subspace predict...Aiming at the time-varying characteristics of industrial process, this paper introduces an adaptive subspace predictive control(ASPC) strategy with time-varying forgetting factor based on the original subspace predictive control algorithm(SPC). The new method uses model matching error to calculate the variable forgetting factor, and applies it to constructing Hankel data matrix.This makes the data represent the changes of system information better. For eliminating the steady state error, the derivation of the incremental control is made. Simulation results on a rotary kiln show that this control strategy has achieved a good control effect.展开更多
In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of sp...In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.展开更多
Concrete precast multicell box-girder(MCB) bridges combine aesthetics with torsional stiffness perfectly.Previous analytical studies indicate that currently available specifications are unable to consider the effect o...Concrete precast multicell box-girder(MCB) bridges combine aesthetics with torsional stiffness perfectly.Previous analytical studies indicate that currently available specifications are unable to consider the effect of the twisting moment(torsional moment) on bridge actions.In straight bridges the effect of torsion is negligible and the transverse reinforced design is governed by other requirements.However,in the case of skewed bridges the effect of the twisting moment should be considered.Therefore,an in-depth study was performed on 90 concrete MCB bridges with skew angles ranging from 0° to 60°.For each girder the bridge actions were determined under the American Association of State Highway and Transportation Officials(AASHTO) live load conditions.The analytical results show that torsional stiffness and live load positions greatly affected the bridges' responses.In addition,based on a statistical analysis of the obtained results,several skew correction factors are proposed to improve the precision of the simplified Henry's method,which is widely used by bridge engineers to predict bridge actions.The relationship between the bending moment and secondary moments was also investigated and it was concluded that all secondary actions increase with an increase in skewness.展开更多
Ring footings are suitable for the structures like tall transmission towers, chimneys, silos and oil storages.These types of structures are susceptible to horizontal loads(wind load) in addition to their dead weight.I...Ring footings are suitable for the structures like tall transmission towers, chimneys, silos and oil storages.These types of structures are susceptible to horizontal loads(wind load) in addition to their dead weight.In the literature, very little or no effort has been made to study the effect of ring footing resting on reinforced sand when subjected to eccentric, inclined and/or eccentric-inclined loadings. This paper aims to study the behavior of ring footing resting on loose sand and/or compacted randomly distributed fiberreinforced sand(RDFS) when subjected to eccentric(0 B, 0.05 B and 0.1 B, where B is the outer diameter of ring footing), inclined(0°,5°,10°, 15°,-5°,-10° and-15°)and eccentric-inclined loadings by using a finite element(FE) software PLAXIS 3 D. The behavior of ring footing is studied by using a dimensionless factor called reduction factor(RF). The numerical model used in the PLAXIS 3 D has been validated by conducting model plate load tests. Moreover, an empirical expression using regression analysis has been presented which will be helpful in plotting a load-settlement curve for the ring footing.展开更多
Road silt loading(sL)is an important parameter in the fugitive road dust(FRD)emissions.In this study,the improved Testing Re-entrained Aerosol Kinetic Emissions from Roads(TRAKER)combined with the AP-42 method was fir...Road silt loading(sL)is an important parameter in the fugitive road dust(FRD)emissions.In this study,the improved Testing Re-entrained Aerosol Kinetic Emissions from Roads(TRAKER)combined with the AP-42 method was firstly developed to quickly measure and estimate the sLs of paved roads in Beijing,China.The annual average sLs in Beijing was 0.59±0.31 g/m^(2)in 2020,and decreased by 22.4%compared with that in 2019.The seasonal variations of sLs followed the order of spring>winter>summer>autumn in the two years.The seasonal mean road sLs on the same type road in the four seasons presented a decline trend from^(2)019 to 2020,especially on the Expressway,decreasing 47.4%-72.7%.The road sLs on the different type roads in the same season followed the order of Major arterial∼Minor arterial∼Branch road>Express road,and Township road∼Country highway>Provincial highway∼National highway.The emission intensities of PM10 and PM_(2.5)from FRD in Beijing in 2020 were lower than those in 2019.The PM10 and PM_(2.5)emission intensities at the four planning areas in the two years all presented the order of the capital functional core area>the urban functional expansion area>the urban development new area>the ecological conservation and development area.The annual emissions of PM10 and PM_(2.5)from FRD in Beijing in 2020 were 74,886 ton and 18,118 ton,respectively,decreasing by∼33.3%compared with those in 2019.展开更多
文摘The intersection of economic development,energy dynamics,environmental policy,and environmental sustainability presents complex challenges for European Union(EU)countries.This study investigatedthe impact of environmental taxes,hydroelectricity consumption,economic globalization,and gross domestic product(GDP)on the load capacity factor(LCF)in the 10 EU member countries(including Austria,Finland,France,Germany,Italy,Poland,Portugal,Slovakia,Spain,and Sweden)using data from 1995 to 2020.To ensure the reliability and validity of the data,this study applied several advanced econometric tests,including the Pesaran and Yamagata slopeheterogeneitytest,Pesaran cross-sectional dependence(CSD)test,second-generation unit root test,and Westerlund cointegration test.The data showed important statistical issues such as slope heterogeneityacross panels,CSD,mixed-orderunit root structures,and long-run associations between variables.To address these issues,we applied an augmented mean group(AMG)model as the main regression approach,andusedthe pooled mean group-autoregressive distributed lag(PMG-ARDL)method to check the robustness.Specifically,the AMG results indicate that a 1.000%rise in hydroelectricity consumptionresults in a 0.048% rise in the LCF,while a 1.000% increase in environmental taxes leads toa 0.175% increase in the LCF.Contrary to this,a 1.000% increase in economic globalization results in a 0.370% decrease in the LCF,and a 1.000% increase in GDP leads toa 0.850% decrease in the LCF.Environmental taxes have a more beneficial impact on the environment,and GDP has the most detrimental effect.The findings provide empirical evidence on the role of environmental taxes,hydroelectricity consumption,economic globalization,and GDP in driving the LCF.Additionally,the findings provide valuable information to policy-makers,academicians,and stakeholders shaping energy and environmental policies in the 10 EU member countries.
文摘Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.
基金This work is supported by the National Natural Science Foundation of China(Nos.51578491 and 52238001).
文摘Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.
文摘Large goods transported in railway are kinds of special goods and they are very important in national construction. In order to transport safely, loading and reinforcing schemes must be made first. How to design a reasonable scheme will be affected by many factors. This paper presents the characteristic of the large goods, summarizes the process of designing a loading and reinforcing scheme of large good, then probes the factors of affecting the loading and reinforcing scheme and gives a detail analysis. It’s considered that those out-of-gauge and overweight degree of goods, center-of- gravity height of a loaded wagon, position of center-of-gravity of goods, type of wagon for using, reinforcement material and reinforcement method, transport expense and transport organization could affect a scheme in the aspects of safety, economy, rapidity and convenience. This conclusion will instruct and help to make a good scheme.
文摘The solution of surface displacement of an elliptical crack under compressive-shear loading was obtained by using the complex function method. The closing mode was established by analyzing the geometrical condition of closing crack, and the corresponding critical stress was solved. The result corrects the traditional viewpoint, in which there exist only open or close states for an elliptical crack, and points out that the local closing is also one of crack states. Based on them, the effect of the closed crack on stress intensity factor was discussed in detail, and its rational formulae are put forward.
基金supported by the National Natural Science Foundation of China(NO.42104028,42174030 and 42004017)the Open Fund of Hubei Luojia Laboratory(No.220100048 and 230100021)the Scientific Research Project of Hubei Provincial Department of Education,and Research Foundation of the Department of Natural Resources of Hunan Province(No.20230104CH)。
文摘The time-varying periodic variations in Global Navigation Satellite System(GNSS)stations affect the reliable time series analysis and appropriate geophysical interpretation.In this study,we apply the singular spectrum analysis(SSA)method to characterize and interpret the periodic patterns of GNSS deformations in China using multiple geodetic datasets.These include 23-year observations from the Crustal Movement Observation Network of China(CMONOC),displacements inferred from the Gravity Recovery and Climate Experiment(GRACE),and loadings derived from Geophysical models(GM).The results reveal that all CMONOC time series exhibit seasonal signals characterized by amplitude and phase modulations,and the SSA method outperforms the traditional least squares fitting(LSF)method in extracting and interpreting the time-varying seasonal signals from the original time series.The decrease in the root mean square(RMS)correlates well with the annual cycle variance estimated by the SSA method,and the average reduction in noise amplitudes is nearly twice as much for SSA filtered results compared with those from the LSF method.With SSA analysis,the time-varying seasonal signals for all the selected stations can be identified in the reconstructed components corresponding to the first ten eigenvalues.Moreover,both RMS reduction and correlation analysis imply the advantages of GRACE solutions in explaining the GNSS periodic variations,and the geophysical effects can account for 71%of the GNSS annual amplitudes,and the average RMS reduction is 15%.The SSA method has proved to be useful for investigating the GNSS timevarying seasonal signals.It could be applicable as an auxiliary tool in the improvement of nonlinear variations investigations.
基金co-supported by the National Natural Science Foundation of China (No. 52175104)the Postdoctoral Fellowship Program of CPSF (No. GZC20233008)
文摘Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior and time-varying meshing stiffness(TVMS)of spiral bevel gear pair with cracked tooth.The tooth is sliced,and the contact points on slices are computed using roll angle surfaces.Considering the geometric complexity of crack surface,a set of procedures is formulated to generate spatial crack and determine crack parameters for contact points.According to the positional relationship between contact point and crack path,each sliced tooth is modeled as a non-uniform cantilever beam with varying reduced effective load-bearing tooth thickness.Then the compliance model of the cracked tooth is established to perform contact analysis,along with TVMS calculations utilizing three different models.By employing spiral bevel gear pairs with distinct types of cracks as examples,the accuracy and efficiency of the developed approach are validated via comparative analyses with finite element analysis(FEA)outcomes.Furthermore,the investigation on effects of cracks shows that tooth cracks can induce alterations in meshing performance of both entire gear pair and individual tooth pairs,including not only cracked tooth pair but also adjacent non-cracked tooth pairs.Hence,the proposed model can serve as a useful tool for analyzing the variations in contact behavior and meshing stiffness of spiral bevel gears due to different cracks.
基金financial support from National Natural Science Foundation of China(Grant No.52378488)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0222).
文摘Gas explosion in confined space often leads to significant pressure oscillation.It is widely recognized that structural damage can be severe when the oscillation frequency of the load resonates with the natural vibration frequency of the structure.To reveal the oscillation mechanism of gas explosion load,the experiment of gas explosion was conducted in a large-scale confined tube with the length of 30 m,and the explosion process was numerically analyzed using FLACS.The results show that the essential cause of oscillation effect is the reflection of the pressure wave.In addition,due to the difference in the propagation path of the pressure wave,the load oscillation frequency at the middle position of the tunnel is twice that at the end position.The average sound velocity can be used to calculate the oscillation frequency of overpressure accurately,and the error is less than 15%.The instability of the flame surface and the increase of flame turbulence caused by the interaction between the pressure wave and the flame surface are the main contributors to the increase in overpressure and amplitude.The overpressure peaks calculated by the existing flame instability model and turbulence disturbance model are 31.7%and 34.7%lower than the numerical results,respectively.The turbulence factor model established in this work can describe the turbulence enhancement effect caused by flame instability and oscillatory load,and the difference between the theoretical and numerical results is only 4.6%.In the theoretical derivation of the overpressure model,an improved model of dynamic turbulence factor is established,which can describe the enhancement effect of turbulence factor caused by flame instability and self-turbulence.Based on the one-dimensional propagation theory of pressure wave,the oscillatory effect of the load is derived to calculate the frequency and amplitude of pressure oscillation.The average error of amplitude and frequency is less than 20%.
基金supported by the Science and Technology Project of Yunnan Power Grid Co.,Ltd.under Grant No.YNKJXM20222410.
文摘Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems.
文摘This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was used to assess the material loading system performance which is one of the key components of the total cycle time for material transportation in an open-pit mine. Loading is among the components of cycle time during which material is being handled. The data analyzed?was?collected from a computerized dispatch system at GGM from which 62,000 loading dispatches per month involving several shifts, 14 excavators and 49 trucks were loaded. About 4465 dispatches per excavator and 1276 dispatches per truck were assessed using loading cycle time data for each dispatch for a period of four months (between August and December). Under fixed tonnage loaded and waste type (33 t of non-acid forming waste rock),?it was observed that loading cycle time depends on excavator model, location and truck being loaded. Average cycle times, PDFS?and CDFS of loading cycle time series were used to identify differences in performance under different situations. It was concluded that shift availability for excavators, loading location, excavator model and truck-shovel combinations strongly affect the productivity during loading process in an open-pit mine.
基金The National Natural Science Foundation of China(No.10962008,51061015)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.
文摘When a crack is subjected to shear force, crack branching usually occurs. Theoretical study shows that the crack branching under shear loading is caused by tensile stress, but not caused by shear fracture. The co plane shear fracture could be obtained if compressive stress with given direction is applied to the specimen, subsequently, calculated shear fracture toughness, K ⅡC , is larger than K ⅠC . A prerequisite of possible occurrence of mode Ⅱ fracture was proposed. The study of shear fracture shows that the maximum circumferential stress theory considered its criterion as a parametric equation of a curve in K Ⅰ, K Ⅱ plane is incorrect; the predicted ratio K ⅡC / K ⅠC =0.866 is incorrect too. [
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328903)the Special Fund of 2011 Internet of Things Development of Ministry of Industry and Information Technology,China(Grant No.2011BAJ03B13-2)+1 种基金the National Natural Science Foundation of China(Grant No.61473050)the Key Science and Technology Program of Chongqing,China(Grant No.cstc2012gg-yyjs40008)
文摘Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.
基金the National Natural Science Foundation of China( No.K19672007)
文摘The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact.
文摘Adopting the load and resistance factor design format, the design method for steel jaeket platform structures is developed. Firstly, the limit state equations and design format for steel jacket platform structures are introduced. Then, the ratio of live load effect to dead load effect is estimated. The target reliabilities for design of offshore structures in China offshore area are calibrated by past practice in API RP2A-WSD code. The load and resistance factors are optimized by minimizing the difference within the target reliability and the resulting reliability over the range of load effect ratios. Considering the concurrence of different loads, load combination factors are obtained through an optimization process, and the relation between the load combination factor and load correlation coefficient is established. Finally, the design formulae for steel jacket structures in China offshore area are recommended.
文摘Aiming at the time-varying characteristics of industrial process, this paper introduces an adaptive subspace predictive control(ASPC) strategy with time-varying forgetting factor based on the original subspace predictive control algorithm(SPC). The new method uses model matching error to calculate the variable forgetting factor, and applies it to constructing Hankel data matrix.This makes the data represent the changes of system information better. For eliminating the steady state error, the derivation of the incremental control is made. Simulation results on a rotary kiln show that this control strategy has achieved a good control effect.
文摘In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.
文摘Concrete precast multicell box-girder(MCB) bridges combine aesthetics with torsional stiffness perfectly.Previous analytical studies indicate that currently available specifications are unable to consider the effect of the twisting moment(torsional moment) on bridge actions.In straight bridges the effect of torsion is negligible and the transverse reinforced design is governed by other requirements.However,in the case of skewed bridges the effect of the twisting moment should be considered.Therefore,an in-depth study was performed on 90 concrete MCB bridges with skew angles ranging from 0° to 60°.For each girder the bridge actions were determined under the American Association of State Highway and Transportation Officials(AASHTO) live load conditions.The analytical results show that torsional stiffness and live load positions greatly affected the bridges' responses.In addition,based on a statistical analysis of the obtained results,several skew correction factors are proposed to improve the precision of the simplified Henry's method,which is widely used by bridge engineers to predict bridge actions.The relationship between the bending moment and secondary moments was also investigated and it was concluded that all secondary actions increase with an increase in skewness.
文摘Ring footings are suitable for the structures like tall transmission towers, chimneys, silos and oil storages.These types of structures are susceptible to horizontal loads(wind load) in addition to their dead weight.In the literature, very little or no effort has been made to study the effect of ring footing resting on reinforced sand when subjected to eccentric, inclined and/or eccentric-inclined loadings. This paper aims to study the behavior of ring footing resting on loose sand and/or compacted randomly distributed fiberreinforced sand(RDFS) when subjected to eccentric(0 B, 0.05 B and 0.1 B, where B is the outer diameter of ring footing), inclined(0°,5°,10°, 15°,-5°,-10° and-15°)and eccentric-inclined loadings by using a finite element(FE) software PLAXIS 3 D. The behavior of ring footing is studied by using a dimensionless factor called reduction factor(RF). The numerical model used in the PLAXIS 3 D has been validated by conducting model plate load tests. Moreover, an empirical expression using regression analysis has been presented which will be helpful in plotting a load-settlement curve for the ring footing.
基金This research was funded by the Development and Demonstration of Road Dust Monitoring and Management System(No.Z191100009119011)the National Research Program for Key Issues in Air Pollution Control China(No.DQGG0201)the National Key Research and Development program of China(No.2018YFC0213203).
文摘Road silt loading(sL)is an important parameter in the fugitive road dust(FRD)emissions.In this study,the improved Testing Re-entrained Aerosol Kinetic Emissions from Roads(TRAKER)combined with the AP-42 method was firstly developed to quickly measure and estimate the sLs of paved roads in Beijing,China.The annual average sLs in Beijing was 0.59±0.31 g/m^(2)in 2020,and decreased by 22.4%compared with that in 2019.The seasonal variations of sLs followed the order of spring>winter>summer>autumn in the two years.The seasonal mean road sLs on the same type road in the four seasons presented a decline trend from^(2)019 to 2020,especially on the Expressway,decreasing 47.4%-72.7%.The road sLs on the different type roads in the same season followed the order of Major arterial∼Minor arterial∼Branch road>Express road,and Township road∼Country highway>Provincial highway∼National highway.The emission intensities of PM10 and PM_(2.5)from FRD in Beijing in 2020 were lower than those in 2019.The PM10 and PM_(2.5)emission intensities at the four planning areas in the two years all presented the order of the capital functional core area>the urban functional expansion area>the urban development new area>the ecological conservation and development area.The annual emissions of PM10 and PM_(2.5)from FRD in Beijing in 2020 were 74,886 ton and 18,118 ton,respectively,decreasing by∼33.3%compared with those in 2019.