期刊文献+
共找到660篇文章
< 1 2 33 >
每页显示 20 50 100
Determination of the degree 120 time-variable gravity field in the Sichuan-Yunnan region using Slepian functions and terrestrial measurements 被引量:5
1
作者 Jiancheng Han Shi Chen +2 位作者 Zhaohui Chen Hongyan Lu Weimin Xu 《Earthquake Science》 2021年第3期211-221,共11页
The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,suc... The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site. 展开更多
关键词 Sichuan-Yunnan region terrestrial gravity measurements time-variable gravity Slepian basis function regional gravity field
在线阅读 下载PDF
Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in China's Mainland 被引量:5
2
作者 Yue Shen QiuYu Wang +1 位作者 WeiLong Rao WenKe Sun 《Earth and Planetary Physics》 CSCD 2022年第1期96-107,共12页
The purpose of this study is to explore nonhydrological mass transfer in China's Mainland.For this purpose,gravity recovery and climate experiment(GRACE)data were obtained to study the spatial distribution of time... The purpose of this study is to explore nonhydrological mass transfer in China's Mainland.For this purpose,gravity recovery and climate experiment(GRACE)data were obtained to study the spatial distribution of time variant gravity signals in China's Mainland.Then,from auxiliary hydrological data processed according to the current hydrological model,a new more comprehensive hydrological model of China's Mainland was constructed.Finally,the time variant signals of this new hydrological model were removed from the time variant gravity field computed from GRACE data,thus obtaining a description of the nonhydrological mass transfer of China's Mainland.The physical sources and mechanisms of the resulting mass transfer are then discussed.The improved,more realistic,hydrological model used here was created by selecting the hydrological components with the best correlations in existing hydrological models,by use of correlation calculation,analysis,and comparison.This improved model includes water in soils and deeper strata,in the vegetation canopy,in lakes,snow,and glaciers,and in other water components(mainly reservoir storage,swamps,and rivers).The spatial distribution of the transfer signals due to nonhydrological mass in China's Mainland was obtained by subtracting the combined hydrological model from the GRACE time-variable gravity field.The results show that the nonhydrological signals in China's Mainland collected in GRACE data were mainly positive signals,and were distributed in the Bohai Rim and the northern and eastern parts of the Tibetan Plateau.The above nonhydrological mass transfer signals have been studied further and are discussed.The results show that the nonhydrological mass migration signals in the Bohai Rim region originate primarily from sea level change and marine sediment accumulation.The mass accumulation from Indian plate collision in the Tibetan Plateau appears to be the main reason for the increase in the residual gravity field in that region. 展开更多
关键词 GRACE hydrological model time-variable gravity signal nonhydrological signal
在线阅读 下载PDF
Seismologic applications of GRACE time-variable gravity measurements 被引量:1
3
作者 Jin Li Jianli Chen Zizhan Zhang 《Earthquake Science》 2014年第2期229-245,共17页
The Gravity Recovery and Climate Experiment(GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since2002. As large earthquakes cause significant mass changes on ... The Gravity Recovery and Climate Experiment(GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since2002. As large earthquakes cause significant mass changes on and under the Earth's surface,GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission,GRACE has successfully detected seismic gravitational changes of several giant earthquakes,which include the 2004 Sumatra–Andaman earthquake,2010 Maule(Chile) earthquake,and 2011 Tohoku-Oki(Japan) earthquake. In this review,we describe by examples how to process GRACE timevariable gravity data to retrieve seismic signals,and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application. 展开更多
关键词 GRACE time-variable gravity Coseismic Postseismic Deformation Earthquake
在线阅读 下载PDF
Singular spectrum analysis for the time-variable seasonal signals from GPS in Yunnan Province
4
作者 Weijie Tan Junping Chen +2 位作者 Yize Zhang Bin Wang Songyun Wang 《Geodesy and Geodynamics》 EI CSCD 2024年第6期582-591,共10页
Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the leas... Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the least squares method,which models seasonal deformation as a constant seasonal amplitude and phase.However,the seasonal variations are not constant from year to year,and the seasonal amplitude and phase are time-variable.In order to obtain the time-variable seasonal signal in the GPS station coordinate time series,singular spectrum analysis(SSA)is conducted in this study.We firstly applied the SSA on simulated seasonal signals with different frequencies 1.00 cycle per year(cpy),1.04 cpy and with time-variable amplitude are superimposed.It was found that SSA can successfully obtain the seasonal variations with different frequencies and with time-variable amplitude superimposed.Then,SSA is carried out on the GPS observations in Yunnan Province.The results show that the time-variable amplitude seasonal signals are ubiquitous in Yunnan Province,and the timevariable amplitude change in 2019 in the region is extracted,which is further explained by the soil moisture mass loading and atmospheric pressure loading.After removing the two loading effects,the SSA obtained modulated seasonal signals which contain the obvious seasonal variations at frequency of 1.046 cpy,it is close with the GPS draconitic year,1.040 cpy.Hence,the time-variable amplitude changes in 2019 and the seasonal GPS draconitic year in the region could be discriminated successfully by SSA in Yunnan Province. 展开更多
关键词 Singular spectrum analysis Modulated seasonal signals time-variable amplitude GPS draconitic year
原文传递
GRACE time-variable gravity and its application to geoscience:Quantitative analysis of relevant literature 被引量:3
5
作者 Cao Liu WenKe Sun 《Earth and Planetary Physics》 EI CSCD 2023年第2期295-309,共15页
The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science a... The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science and has generated revolutionary changes.Because of natural phenomena such as climate warming,glacial melting,sea level rise,and earthquakes,earth science research has become an increasingly popular discipline in recent years.This article summarizes the importance of GRACE time-varying gravity,its application to geoscience,and its development.We analyzed the historical development and current status of GRACE time-varying gravity as well as research hotspots by searching the literature in the core collection databases of the China National Knowledge Infrastructure and the Web of Science over the past 20 years.The CiteSpace and VOSviewer software packages were applied with reference to the principle of literature metrology.Our investigation and analysis of characteristic indexes,such as the numbers of publications,co-occurrence of keywords,and co-citation of documents,uncovered the wide application and promotion of gravity satellites,especially GRACE time-varying gravity,in earth science.The results showed that the number of publications addressing GRACE data and time-varying gravity theory is increasing annually and that the USA,China,and Germany are the main producers.The Chinese Academy of Sciences,the National Aeronautics and Space Administration of the United States,and the Helmholtz Association of German Research Centres rank among the top three institutions in the world in terms of producing the most publications on this topic.We found that GRACE time-varying gravity plays unique roles in measuring changes in terrestrial water storage changes,ice and snow melting and sea level changes,and(co)seismic gravity changes,as well as in promoting other disciplines. 展开更多
关键词 Gravity Recovery and Climate Experiment(GRACE) Gravity Recovery and Climate Experiment Follow-On(GRACE-FO) time-varying gravity BIBLIOMETRY mass change CiteSpace VOSviewer
在线阅读 下载PDF
Backward Euler-Maruyama method applied to nonlinear hybrid stochastic differential equations with time-variable delay 被引量:5
6
作者 Chengjian Zhang Ying Xie 《Science China Mathematics》 SCIE CSCD 2019年第3期597-616,共20页
In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the loca... In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the local Lipschitz condition and polynomial growth condition, it is proved that the backward Euler-Maruyama method is strongly convergent. Additionally, the moment estimates and almost sure exponential stability for the analytical solution are proved. Also, under the appropriate condition, we show that the numerical solutions for the backward Euler-Maruyama methods are almost surely exponentially stable. A numerical experiment is given to illustrate the computational effectiveness and the theoretical results of the method. 展开更多
关键词 NONLINEAR HYBRID stochastic differential equations time-variable delay BACKWARD Euler-Maruyama method strong convergence ALMOST surely exponential stability
原文传递
Time-variant fragility analysis of the bridge system considering time-varying dependence among typical component seismic demands 被引量:10
7
作者 Song Shuai Qian Yongjiu +2 位作者 Liu Jing Xie Xiaorui Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第2期363-377,共15页
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Bas... This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them. 展开更多
关键词 system FRAGILITY CHLORIDE corrosion TIME-VARYING DEPENDENCE COPULA function probabilistic seismic demand
在线阅读 下载PDF
Simulation of spatially coupling dynamic response of train-track time-variant system 被引量:26
8
作者 向俊 李德建 曾庆元 《Journal of Central South University of Technology》 2003年第3期226-230,共5页
There exist three problems in the calculation of lateral vibration of the train-track time-variant system athome and abroad and the method to solve them is presented. Spatially coupling vibration analysis model of tra... There exist three problems in the calculation of lateral vibration of the train-track time-variant system athome and abroad and the method to solve them is presented. Spatially coupling vibration analysis model of train-track time-variant system is put forward. Each vehicle is modeled as a multi-body system with 26 degrees of freedomand the action of coupler is also considered. The track structure is modeled as an assembly of track elements with 30degrees of freedom, then the spatially coupling vibration matrix equation of the train-track time-variant system is es-tablished on the basis of the principle of total potential energy with stationary value and the "set-in-right-position"rule. The track vertical geometric irregularity is considered as the excitation source of the vertical vibration of thesystem, and the hunting wave of car bogie frame is taken as the excitation source of lateral vibration of the system.The spatially coupling vibration matrix equation of the system is solved by Wilson-θ direct integration method. Theapproximation of the calculated results to the spot test results demonstrates the feasibility and effectiveness of thepresented analysis method. Finally, some other vibration responses of the system are also obtained. 展开更多
关键词 vibration TRAIN TRACK time-variant SYSTEM HUNTING wave car BOGIE FRAME excitation source
在线阅读 下载PDF
Time-Variant Reliability-Based Multi-Objective Fuzzy Design Optimization for Anti-Roll Torsion Bar of EMU 被引量:7
9
作者 Pengpeng Zhi Zhonglai Wang +1 位作者 Bingzhi Chen Ziqiang Sheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期1001-1022,共22页
Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ... Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case. 展开更多
关键词 Anti-roll torsion bar time-variant reliability fuzzy design optimization MULTI-OBJECTIVE
在线阅读 下载PDF
Time-variant reliability analysis of three-dimensional slopes based on Support Vector Machine method 被引量:4
10
作者 陈昌富 肖治宇 张根宝 《Journal of Central South University》 SCIE EI CAS 2011年第6期2108-2114,共7页
In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. ... In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed. 展开更多
关键词 slope engineering Morgenstern-Price method three dimension Support Vector Machine time-variant reliability
在线阅读 下载PDF
A novel imprecise stochastic process model for time-variant or dynamic uncertainty quantification 被引量:4
11
作者 Jinwu LI Chao JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第9期255-267,共13页
This paper proposes a novel model named as “imprecise stochastic process model” to handle the dynamic uncertainty with insufficient sample information in real-world problems. In the imprecise stochastic process mode... This paper proposes a novel model named as “imprecise stochastic process model” to handle the dynamic uncertainty with insufficient sample information in real-world problems. In the imprecise stochastic process model, the imprecise probabilistic model rather than a precise probability distribution function is employed to characterize the uncertainty at each time point for a time-variant parameter, which provides an effective tool for problems with limited experimental samples. The linear correlation between variables at different time points for imprecise stochastic processes is described by defining the auto-correlation coefficient function and the crosscorrelation coefficient function. For the convenience of analysis, this paper gives the definition of the P-box-based imprecise stochastic process and categorizes it into two classes: parameterized and non-parameterized P-box-based imprecise stochastic processes. Besides, a time-variant reliability analysis approach is developed based on the P-box-based imprecise stochastic process model,through which the interval of dynamic reliability for a structure under uncertain dynamic excitations or time-variant factors can be obtained. Finally, the effectiveness of the proposed method is verified by investigating three numerical examples. 展开更多
关键词 Dynamic reliability analysis Epistemic uncertainty Imprecise random variable Imprecise stochastic process P-box model time-variant uncertainty
原文传递
Time-Variant Reliability Analysis of FPSO Hull Girder Considering Corrosion Based on Statistics 被引量:2
12
作者 张道坤 唐文勇 张圣坤 《China Ocean Engineering》 SCIE EI 2007年第2期197-205,共9页
FPSO is a kind of important exploitation platform used in ocean oil and gas industry, which has the unique character of mooring at outsea for a long time. Since it can not be inspected and maintained thoronghly at doc... FPSO is a kind of important exploitation platform used in ocean oil and gas industry, which has the unique character of mooring at outsea for a long time. Since it can not be inspected and maintained thoronghly at dock like other kinds of ships, the reliability of FPSO hull girder during the whole service should be focused. Based on latest corrosion database and rational corrosion model, the ultimate strength of one FPSO is calculated under the conditions of slight, moderate and severe corrosion. The results not only provide the reliabihty under different corrosion conditions, but also do well for further inspection and maintenance research. The results provide necessary foundation for deciding inspection intervals and maintenance measure, which has practical sense to improve the general safety level of ocean engineering. 展开更多
关键词 FPSO CORROSION time-variant reliability analysis
在线阅读 下载PDF
Precision motion control for electro-hydraulic axis systems under unknown time-variant parameters and disturbances 被引量:1
13
作者 Xiaowei YANG Yaowen GE +1 位作者 Wenxiang DENG Jianyong YAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期463-471,共9页
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ... This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well. 展开更多
关键词 Adaptive control Asymptotic convergence Electro-hydraulic axis system Precision motion control Unknown time-variant parameters and disturbances
原文传递
Non-uniform thermal behavior of single-layer spherical reticulated shell structures considering time-variant environmental factors: analysis and design 被引量:1
14
作者 Wucheng XU Xiaoqing ZHENG +2 位作者 Xuanhe ZHANG Zhejie LAI Yanbin SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第3期223-237,共15页
Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temper... Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures. 展开更多
关键词 Non-uniform temperature field Non-uniform thermal load Non-uniform thermal effect Single-layer spherical reticulated shell time-variant environmental factor
原文传递
Complex Modal Analysis for the Time-Variant Dynamical Problem of Rotating Pipe Conveying Fluid
15
作者 Lihua Wang Zheng Zhong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第1期1-18,共18页
A semi-analytical form of complex modal analysis is proposed for the time-variant dynamical problem of rotating pipe conveying fluid system.The complex mode superposition method is introduced for the dynamic analysis ... A semi-analytical form of complex modal analysis is proposed for the time-variant dynamical problem of rotating pipe conveying fluid system.The complex mode superposition method is introduced for the dynamic analysis in the time and frequency domains,in which appropriate orthogonality conditions are constructed to decouple the time-variant equation of motion.Consequently,complex frequencies and modes of vibration are analytically formulated and the variations of frequencies and damping of the system are evaluated.Numerical time-variant example of rotating pipe conveying fluid illustrates the effectiveness and accuracy of this method.Furthermore,the proposed solution scheme is also applicable to other similar time-variant dynamical problems. 展开更多
关键词 SEMI-ANALYTICAL form complex MODAL analysis time-variant DYNAMICAL PROBLEM ROTATING pipe CONVEYING fluid
在线阅读 下载PDF
Augmented line sampling and combination algorithm for imprecise time-variant reliability analysis
16
作者 Xiukai YUAN Weiming ZHENG +1 位作者 Yunfei SHU Yiwei DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期258-274,共17页
Assessment of imprecise time-variant reliability in engineering is a critical task when accounting for both the variability of structural properties and loads over time and the presence of uncertainties involved in th... Assessment of imprecise time-variant reliability in engineering is a critical task when accounting for both the variability of structural properties and loads over time and the presence of uncertainties involved in the ambiguity of parameters simultaneously.To estimate the Imprecise Time-variant Failure Probability Function(ITFPF)and derive the imprecise reliability results as a byproduct,Adaptive Combination Augmented Line Sampling(ACALS)is proposed.It consists of three integrated features:Augmented Line Sampling(ALS),adaptive strategy,and the optimal combination.ALS is adopted as an efficient analysis tool to obtain the failure probability function w.r.t.imprecise parameters.Then,the adaptive strategy iteratively applies ALS while considering both imprecise parameters and time simultaneously.Finally,the optimal combination algorithm collects all result components in an optimal manner to minimize the Coefficient of Variance(C.o.V.)of the ITFPF estimate.Overall,the proposed ACALS method outperforms the original ALS method by efficiently estimating the ITFPF while guaranteeing a minimal C.o.V.Thus,the proposed approach can serve as an effective tool for imprecise time-variant reliability analysis in real engineering applications.Several examples are presented to demonstrate the superiority of the proposed approach in addressing the challenges of estimating the ITFPF. 展开更多
关键词 time-variant reliability Imprecise reliability Line sampling Adaptive strategy Combination algorithm
原文传递
On the Application of Mixed Models of Probability and Convex Set for Time-Variant Reliability Analysis
17
作者 Fangyi Li Dachang Zhu Huimin Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1981-1999,共19页
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems... In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem. 展开更多
关键词 Mixed uncertainty probability model convex model time-variant reliability analysis
在线阅读 下载PDF
LEGENDRE SERIES SOLUTIONS FOR TIME-VARIATION DYNAMICS
18
作者 Cao, ZY Zou, GP Tang, SG 《Acta Mechanica Solida Sinica》 SCIE EI 2000年第1期60-66,共7页
In this topic, a new. approach to the analysis of time-variation dynamics is proposed by use of Legendre series expansion and Legendre integral operator matrix. The theoretical basis for effective solution of time-var... In this topic, a new. approach to the analysis of time-variation dynamics is proposed by use of Legendre series expansion and Legendre integral operator matrix. The theoretical basis for effective solution of time-variation dynamics is therefore established, which is beneficial to further research of time-variation science. 展开更多
关键词 time-variation dynamics Legendre series state space equation integral operator matrix
在线阅读 下载PDF
Norm-based zeroing neural dynamics for time-variant non-linear equations
19
作者 Linyan Dai Hanyi Xu +1 位作者 Yinyan Zhang Bolin Liao 《CAAI Transactions on Intelligence Technology》 2024年第6期1561-1571,共11页
Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergen... Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergence performance and robustness in most proposed ZND models for solving TVNE,leading to a huge cost of hardware implementation and model complexity.To overcome these problems,the authors develop a new norm-based ZND(NBZND)model with strong robustness for solving TVNE,not applying element-wise non-linear activated functions but introducing a two-norm operation to achieve finite-time convergence.Moreover,the authors develop a discretetime NBZND model for the potential deployment of the model on digital computers.Rigorous theoretical analysis for the NBZND is provided.Simulation results substantiate the advantages of the NBZND model for solving TVNE. 展开更多
关键词 finite-time convergence norm-based zeroing neural dynamics ROBUSTNESS time-variant nonlinear equation zeroing neural dynamic
在线阅读 下载PDF
Multiscale analysis of spring discharge and the time-variant characteristic of Karst groundwater system
20
《Global Geology》 1998年第1期73-74,共2页
关键词 TIME Multiscale analysis of spring discharge and the time-variant characteristic of Karst groundwater system
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部