According to the World Health Organization,about 50 million people worldwide suffer from epilepsy.The detection and treatment of epilepsy face great challenges.Electroencephalogram(EEG)is a significant research object...According to the World Health Organization,about 50 million people worldwide suffer from epilepsy.The detection and treatment of epilepsy face great challenges.Electroencephalogram(EEG)is a significant research object widely used in diagnosis and treatment of epilepsy.In this paper,an adaptive feature learning model for EEG signals is proposed,which combines Huber loss function with adaptive weight penalty term.Firstly,each EEG signal is decomposed by intrinsic time-scale decomposition.Secondly,the statistical index values are calculated from the instantaneous amplitude and frequency of every component and fed into the proposed model.Finally,the discriminative features learned by the proposed model are used to detect seizures.Our main innovation is to consider a highly flexible penalization based on Huber loss function,which can set different weights according to the influence of different features on epilepsy detection.Besides,the new model can be solved by proximal alternating direction multiplier method,which can effectively ensure the convergence of the algorithm.The performance of the proposed method is evaluated on three public EEG datasets provided by the Bonn University,Childrens Hospital Boston-Massachusetts Institute of Technology,and Neurological and Sleep Center at Hauz Khas,New Delhi(New Delhi Epilepsy data).The recognition accuracy on these two datasets is 98%and 99.05%,respectively,indicating the application value of the new model.展开更多
S-ALOHA (Slotted ALOHA) random access protocol is a widely used protocol mainly for the transmission of short packets in wireless networks. Most papers consider either an infinite population model where the impact o...S-ALOHA (Slotted ALOHA) random access protocol is a widely used protocol mainly for the transmission of short packets in wireless networks. Most papers consider either an infinite population model where the impact of the backoff protocol cannot be adequately evaluated or a finite population model where the number of nodes is fixed. In this letter, a combination of both models is proposed using the time-scale decomposition technique. This methodology allows to study the system under more realistic conditions where the dynamics of users enter and leaving the system are reflected on the performance of the system as well as the impact of the backoff protocol. Also, it allows studying the system in non-saturation conditions. The proposed methodology divides the analysis in two parts: packet-level and connection-level. This analysis renders suitable results when the time scale of the packet level and connection level statistics is different. On the other hand, when these scales are similar, the proposed methodology is no longer suited.展开更多
Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete en...Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.展开更多
In recent years,subsynchronous control interaction(SSCI)has frequently taken place in renewable-connected power systems.To counter this issue,utilities have been seeking tools for fast and accurate identification of S...In recent years,subsynchronous control interaction(SSCI)has frequently taken place in renewable-connected power systems.To counter this issue,utilities have been seeking tools for fast and accurate identification of SSCI events.The main challenges of SSCI monitoring are the time-varying nature and uncertain modes of SSCI events.Accordingly,this paper presents a simple but effective method that takes advantage of intrinsic time-scale decomposition(ITD).The main purpose is to improve the accuracy and robustness of ITD by incorporating the least-squares method.Results show that the proposed method strikes a good balance between dynamic performance and estimation accuracy.More importantly,the method does not require any prior information,and its performance is therefore not affected by the frequency constitution of the SSCI.Comprehensive comparative studies are conducted to demonstrate the usefulness of the method through synthetic signals,electromagnetic temporary program(EMTP)simulations,and field-recorded SSCI data.Finally,real-time simulation tests are conducted to show the feasibility of the method for real-time monitoring.展开更多
Machine-learning is a robust technique for understanding pollution characteristics of surface ozone,which are at high levels in urban China.This study introduced an innovative approach combining trend decomposition wi...Machine-learning is a robust technique for understanding pollution characteristics of surface ozone,which are at high levels in urban China.This study introduced an innovative approach combining trend decomposition with Random Forest algorithm to investigate ozone dynamics and formation regimes in a coastal area of China.During the period of 2017–2022,significant inter-annual fluctuations emerged,with peaks in mid-2017 attributed to volatile organic compounds(VOCs),and in late-2019 influenced by air temperature.Multifaceted periodicities(daily,weekly,holiday,and yearly)in ozone were revealed,elucidating substantial influences of daily and yearly components on ozone periodicity.A VOC-sensitive ozone formation regime was identified,characterized by lower VOCs/NO_(x) ratios(average=0.88)and significant positive correlations between ozone and VOCs.This interplay manifested in elevated ozone duringweekends,holidays,and pandemic lockdowns.Key variables influencing ozone across diverse timescaleswere uncovered,with solar radiation and temperature driving daily and yearly ozone variations,respectively.Precursor substances,particularly VOCs,significantly shaped weekly/holiday patterns and long-term trends of ozone.Specifically,acetone,ethane,hexanal,and toluene had a notable impact on the multi-year ozone trend,emphasizing the urgency of VOC regulation.Furthermore,our observations indicated that NO_(x) primarily drived the stochastic variations in ozone,a distinguishing characteristic of regions with heavy traffic.This research provides novel insights into ozone dynamics in coastal urban areas and highlights the importance of integrating statistical and machinelearning methods in atmospheric pollution studies,with implications for targeted mitigation strategies beyond this specific region and pollutant.展开更多
Multivariate time series forecasting iswidely used in traffic planning,weather forecasting,and energy consumption.Series decomposition algorithms can help models better understand the underlying patterns of the origin...Multivariate time series forecasting iswidely used in traffic planning,weather forecasting,and energy consumption.Series decomposition algorithms can help models better understand the underlying patterns of the original series to improve the forecasting accuracy of multivariate time series.However,the decomposition kernel of previous decomposition-based models is fixed,and these models have not considered the differences in frequency fluctuations between components.These problems make it difficult to analyze the intricate temporal variations of real-world time series.In this paper,we propose a series decomposition-based Mamba model,DecMamba,to obtain the intricate temporal dependencies and the dependencies among different variables of multivariate time series.A variable-level adaptive kernel combination search module is designed to interact with information on different trends and periods between variables.Two backbone structures are proposed to emphasize the differences in frequency fluctuations of seasonal and trend components.Mamba with superior performance is used instead of a Transformer in backbone structures to capture the dependencies among different variables.A new embedding block is designed to capture the temporal features better,especially for the high-frequency seasonal component whose semantic information is difficult to acquire.A gating mechanism is introduced to the decoder in the seasonal backbone to improve the prediction accuracy.A comparison with ten state-of-the-art models on seven real-world datasets demonstrates that DecMamba can better model the temporal dependencies and the dependencies among different variables,guaranteeing better prediction performance for multivariate time series.展开更多
Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. Ho...Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
In recent years,ozone has become one of the key pollutants affecting the urban air qual-ity.Direct catalytic decomposition of ozone emerges as an effective method for ozone re-moval.Field experimentswere conducted to ...In recent years,ozone has become one of the key pollutants affecting the urban air qual-ity.Direct catalytic decomposition of ozone emerges as an effective method for ozone re-moval.Field experimentswere conducted to evaluate the effectiveness of exteriorwall coat-ings with ozone decomposition catalysts for ozone removal in practical applications.ANSYS 2020R1 software was first used for simulation and analysis of ozone concentration and flow fields to investigate the decomposition boundary of these wall coatings.The results show that the exterior wall coatings with manganese-based catalysts can effectively reduce the ozone concentration near the wall coating.The ozone decomposition efficiency is nega-tively correlated with the distance fromthe coating and the decomposition boundary range is around 18 m.The decomposition boundary will increase with the increase of tempera-ture,and decrease with the increase of the wind speed and the relative humidity.These results underscore the viability of using exterior wall coatings with catalysts for controlling ozone pollution in atmospheric environments.This approach presents a promising avenue for addressing ozone pollution through self-purifying materials on building external wall.展开更多
In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrabilit...In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables.展开更多
We presented the preparation and analysis of La_(1-x)K_(x)CoO_(3)(x=0.1-0.4)catalysts,supported on microwave-absorbing ceramic carriers,using the sol-gel method.We systematically investigated the effects of various re...We presented the preparation and analysis of La_(1-x)K_(x)CoO_(3)(x=0.1-0.4)catalysts,supported on microwave-absorbing ceramic carriers,using the sol-gel method.We systematically investigated the effects of various reaction conditions under microwave irradiation(0-50 W).These conditions included reaction temperatures(300-600℃),oxygen concentrations(0-6%),and varying K^(+)doping levels on the catalysts'activity.The crystalline phase,microstructure,and the catalytic activity of the catalyst were analyzed by XRD,TEM,H_2-TPR,and O_(2)-TPD.The experimental results reveal that La_(1-x)K_(x)CoO_(3)(x=0.1-0.4)catalysts consistently form homogeneous perovskite nanoparticles across different doping levels.The NO decomposition efficiency on these catalysts initially increases and then decreases with variations in doping amount,temperature,and microwave power.Additionally,an increase in oxygen concentration positively influences NO conversion rates.The optimal performance is observed with La_(0.7)K_(0.3)CoO_(3)catalyst under conditions of x=0.3,400℃,10 W microwave power,and 4%oxygen concentration,achieving a peak NO conversion rate of La_(0.7)K_(0.3)CoO_(3)catalyst is 93.1%.展开更多
As an independent thermodynamic parameter,pressure significantly influences interatomic distances,leading to an increase in material density.In this work,we employ the CALYPSO structure search and density functional t...As an independent thermodynamic parameter,pressure significantly influences interatomic distances,leading to an increase in material density.In this work,we employ the CALYPSO structure search and density functional theory calculations to explore the structural phase transitions and electronic properties of calcium-sulfur compounds(Ca_(x)S_(1-x),where x=1/4,1/3,1/2,2/3,3/4,4/5)under 0-1200 GPa.The calculated formation enthalpies suggest that Ca_(x)S_(1-x)compounds undergo multiple phase transitions and eventually decompose into elemental Ca and S,challenging the traditional view that pressure stabilizes and densifies compounds.The analysis of formation enthalpy indicates that an increase in pressure leads to a rise in internal energy and the PV term,resulting in thermodynamic instability.Bader charge analysis reveals that this phenomenon is attributed to a decrease in charge transfer under high pressure.The activation of Ca-3d orbitals is significantly enhanced under pressure,leading to competition with Ca-4s orbitals and S-3p orbitals.This may cause the formation enthalpy minimum on the convex hull to shift sequentially from CaS to CaS_(3),then to Ca_(3)S and Ca_(2)S,and finally back to CaS.These findings provide critical insights into the behavior of alkaline-earth metal sulfides under high pressure,with implications for the synthesis and application of novel materials under extreme conditions and for understanding element distribution in planetary interiors.展开更多
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti...Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.展开更多
Heterogeneous graphs generally refer to graphs with different types of nodes and edges.A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs,which can be seen as a special...Heterogeneous graphs generally refer to graphs with different types of nodes and edges.A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs,which can be seen as a special kind of directed acyclic graph with same node and edge types as the heterogeneous graph.However,how to design proper metagraphs is challenging.Recently,there have been many works on learning suitable metagraphs from a heterogeneous graph.Existing methods generally introduce continuous weights for edges that are independent of each other,which ignores the topological structures of meta-graphs and can be ineffective.To address this issue,the authors propose a new viewpoint from tensor on learning meta-graphs.Such a viewpoint not only helps interpret the limitation of existing works by CANDECOMP/PARAFAC(CP)decomposition,but also inspires us to propose a topology-aware tensor decomposition,called TENSUS,that reflects the structure of DAGs.The proposed topology-aware tensor decomposition is easy to use and simple to implement,and it can be taken as a plug-in part to upgrade many existing works,including node classification and recommendation on heterogeneous graphs.Experimental results on different tasks demonstrate that the proposed method can significantly improve the state-of-the-arts for all these tasks.展开更多
When plants respond to drought stress,dynamic cellular changes occur,accompanied by alterations in gene expression,which often act through trans-regulation.However,the detection of trans-acting genetic variants and ne...When plants respond to drought stress,dynamic cellular changes occur,accompanied by alterations in gene expression,which often act through trans-regulation.However,the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers.Using a tensor decomposition method,we identify trans-acting expression quantitative trait loci(trans-eQTLs)linked to gene modules,rather than individual genes,which were associated with maize drought response.Module-to-trait association analysis demonstrates that half of the modules are relevant to drought-related traits.Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules,the majority of which cannot be detected based on individual gene expression.Notably,the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection.We further prioritize the genes that affect the transcriptional regulation of multiple genes in trans,as exemplified by two transcription factor genes.Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.展开更多
The deployment of non-precious metal catalysts for the production of COx-free hydrogen via the ammonia decomposition reaction(ADR)presents a promising yet great challenge.In the present study,two crystal structures of...The deployment of non-precious metal catalysts for the production of COx-free hydrogen via the ammonia decomposition reaction(ADR)presents a promising yet great challenge.In the present study,two crystal structures of α-MoC and β-Mo_(2)C catalysts with different Mo/C ratios were synthesized,and their ammonia decomposition performance as well as structural evolution in ADR was investigated.The β-Mo_(2)C catalyst,characterized by a higher Mo/C ratio,demonstrated a remarkable turnover frequency of 1.3 s^(-1),which is over tenfold higher than that ofα-MoC(0.1 s^(-1)).An increase in the Mo/C ratio of molybdenum carbide revealed a direct correlation between the surface Mo/C ratio and the hydrogen yield.The transient response surface reaction indicated that the combination of N*and N*derived from NH_(3) dissociation represents the rate-determining step in the ADR,andβ-Mo2C exhibited exceptional proficiency in facilitating this pivotal step.Concurrently,the accumulation of N*species on the carbide surface could induce the phase transition of molybdenum carbide to nitride,which follows a topological transformation.It is discovered that such phase evolution was affected by the Mo-C surface and reaction temperature simultaneously.When the kinetics of combination of N*was accelerated by rising temperatures and its accumulation on the carbide surface was mitigated,β-Mo_(2)C maintained its carbide phase,preventing nitridation during the ADR at 810℃.Our results contribute to an in-depth understanding of the molybdenum carbides’catalytic properties in ADR and highlight the nature of the carbide-nitride phase transition in the reaction.展开更多
High entropy alloys(HEAs)constituted of single solid solution phase,but remains chemical inhomogeneity in nature due to its multi-principal composition.Currently,existence of nanoscale spinodal decomposition(SD)phase ...High entropy alloys(HEAs)constituted of single solid solution phase,but remains chemical inhomogeneity in nature due to its multi-principal composition.Currently,existence of nanoscale spinodal decomposition(SD)phase in matrix was found to have significant impact on the properties of HEAs.Nevertheless,the morphology evolution and the kinetics of SD is not clear,which hinders in-depth understanding of the structure-property relationship.In this study,we examine the spinodal structures in(FeCoCrNi)85(AlCu)15 HEAs at different states using in-situ small-angle neutron scattering(SANS),in conjunction with transmission electron microscopy technique.The result demonstrates that SD occurred when aging the HEA samples at temperatures ranging from 500 to 800℃,which leads to the phase constitution of NiAlCu-rich and FeCoCr-rich spinodal phases,L1_(2)ordered phases,and FCC matrix.The characteristic wavelength of SD(λ_(SD))grows from 5.31 to 51.26 nm when aging temperature rises from 500 to 800℃,which explains the enhancement of the alloy’s microhardness.The SD kinetics was unraveled by fitting the time-dependentλ_(SD)through in-situ SANS measurement at 700℃.During isothermal treatment at 700℃,theλ_(SD)increases from 10.42 to 17.43 nm with prolonged time,and SD is in the late stage from the exponential trend of theλ_(SD)over time.Moreover,comparing with aging temperature,the aging time has a relatively minor impact on the coarsening of SD.展开更多
Exploring the factors driving the decoupling of China’s sulfur dioxide(SO_(2))emissions from economic growth(DEI)is crucial for achieving sustainable development.By analyzing the decoupling indicators and driving fac...Exploring the factors driving the decoupling of China’s sulfur dioxide(SO_(2))emissions from economic growth(DEI)is crucial for achieving sustainable development.By analyzing the decoupling indicators and driving factors at both the generation and treatment stages of SO_(2),more effective targeted mitigation strategies can be developed.We employ the Tapio decoupling model and propose a two-stage method to examine the decoupling issues related to SO_(2).Our findings indicate that:①DEI shows a steady and significant improvement,with SO_(2)emission intensity identified as the primary driver.②for the decoupling of economic growth and SO_(2)generation,energy scale serves as the largest stimulator,while the effect of energy intensity changes from negative to positive,and pollution intensity is first positive and then negative.③For the decoupling of SO_(2)generation and SO_(2)removal,treatment efficiency leads as the largest promoter,followed by treatment intensity.Based on these results,this study recommends that China focuses more on enhancing clean energy utilization and the effectiveness of treatment processes.展开更多
The Mountain Pass mine is recognized as one of the world's primary sources of rare earth minerals.These rare earth minerals mainly consist of bastnaesite and a small amount of monazite phosphate,which cannot be de...The Mountain Pass mine is recognized as one of the world's primary sources of rare earth minerals.These rare earth minerals mainly consist of bastnaesite and a small amount of monazite phosphate,which cannot be decomposed and recovered through conventional oxidative roasting and hydrochloric acid leaching process.An efficient,clean,and economical process called the"combined method"was proposed for the utilization of the Mountain Pass mine to extract rare earths from Mountain Pass rare earth concentrate(MPREC).The main steps of this process include weak oxidation atmosphere roasting,step leaching of hydrochloric acid,solid-liquid separation,the monazite slag with sulfuric acid roasting water leaching,etc.In this paper,the roasting process of MPREC under a weak oxidation atmosphere was investigated.The study examines the thermal decomposition kinetics,phase transition process,and leaching behavior of MPREC in air/CO_(2)atmosphere.Results show that,the activation energy(Ea)for MPREC thermal decomposition in air and CO_(2)atmosphere are 146 and 320 kJ/mol,respectively.At temperature above 500℃in air or above 700℃in CO_(2)atmosphere,REOF are generated from bastnaesite through an in-situ reaction with CaO,which is decomposed from CaCO_(3),to form CaF_(2)and rare earth oxide(REO).Thus,F is regulated into solid phase.In an oxidizing atmosphere,the thermal decomposition of bastnaesite is accompanied by the rapid oxidation of Ce(Ⅲ).In co ntrast,the oxidation of Ce(Ⅲ)in a CO_(2)atmosphere is significantly inhibited.At 700℃,the oxidation rate of Ce in air is 74.09%,while in a CO_(2)atmosphere,it is only 33.83%.The hydrochloric acid leaching experiment shows that,the leaching rate of rare earth after roasting at 600℃under an air atmosphere reaches to 82.9%,and it reaches 87%after roasting at 800℃under a CO_(2)atmosphere.The reduction of Ce oxidation in a weak oxidizing atmosphere significantly improves the leaching rate of Ce.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11701144,11971149)Henan Province Key and Promotion Special(Science and Technology)Project(Grant No.212102310305).
文摘According to the World Health Organization,about 50 million people worldwide suffer from epilepsy.The detection and treatment of epilepsy face great challenges.Electroencephalogram(EEG)is a significant research object widely used in diagnosis and treatment of epilepsy.In this paper,an adaptive feature learning model for EEG signals is proposed,which combines Huber loss function with adaptive weight penalty term.Firstly,each EEG signal is decomposed by intrinsic time-scale decomposition.Secondly,the statistical index values are calculated from the instantaneous amplitude and frequency of every component and fed into the proposed model.Finally,the discriminative features learned by the proposed model are used to detect seizures.Our main innovation is to consider a highly flexible penalization based on Huber loss function,which can set different weights according to the influence of different features on epilepsy detection.Besides,the new model can be solved by proximal alternating direction multiplier method,which can effectively ensure the convergence of the algorithm.The performance of the proposed method is evaluated on three public EEG datasets provided by the Bonn University,Childrens Hospital Boston-Massachusetts Institute of Technology,and Neurological and Sleep Center at Hauz Khas,New Delhi(New Delhi Epilepsy data).The recognition accuracy on these two datasets is 98%and 99.05%,respectively,indicating the application value of the new model.
文摘S-ALOHA (Slotted ALOHA) random access protocol is a widely used protocol mainly for the transmission of short packets in wireless networks. Most papers consider either an infinite population model where the impact of the backoff protocol cannot be adequately evaluated or a finite population model where the number of nodes is fixed. In this letter, a combination of both models is proposed using the time-scale decomposition technique. This methodology allows to study the system under more realistic conditions where the dynamics of users enter and leaving the system are reflected on the performance of the system as well as the impact of the backoff protocol. Also, it allows studying the system in non-saturation conditions. The proposed methodology divides the analysis in two parts: packet-level and connection-level. This analysis renders suitable results when the time scale of the packet level and connection level statistics is different. On the other hand, when these scales are similar, the proposed methodology is no longer suited.
基金Project supported by the National High-Tech R&D Program(863)of China(No.2014AA041501)
文摘Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.
基金supported in part by the National Natural Science Foundation of China(No.51907133)in part by the Fundamental Research Funds for the Central Universities(No.YJ201911).
文摘In recent years,subsynchronous control interaction(SSCI)has frequently taken place in renewable-connected power systems.To counter this issue,utilities have been seeking tools for fast and accurate identification of SSCI events.The main challenges of SSCI monitoring are the time-varying nature and uncertain modes of SSCI events.Accordingly,this paper presents a simple but effective method that takes advantage of intrinsic time-scale decomposition(ITD).The main purpose is to improve the accuracy and robustness of ITD by incorporating the least-squares method.Results show that the proposed method strikes a good balance between dynamic performance and estimation accuracy.More importantly,the method does not require any prior information,and its performance is therefore not affected by the frequency constitution of the SSCI.Comprehensive comparative studies are conducted to demonstrate the usefulness of the method through synthetic signals,electromagnetic temporary program(EMTP)simulations,and field-recorded SSCI data.Finally,real-time simulation tests are conducted to show the feasibility of the method for real-time monitoring.
基金supported by Ningbo Natural Science Foundation(No.2023J059)Ningbo Commonweal Programme Key Project(No.2023S038)Guangxi Key Research and Development Programme(No.GuikeAB21220063).
文摘Machine-learning is a robust technique for understanding pollution characteristics of surface ozone,which are at high levels in urban China.This study introduced an innovative approach combining trend decomposition with Random Forest algorithm to investigate ozone dynamics and formation regimes in a coastal area of China.During the period of 2017–2022,significant inter-annual fluctuations emerged,with peaks in mid-2017 attributed to volatile organic compounds(VOCs),and in late-2019 influenced by air temperature.Multifaceted periodicities(daily,weekly,holiday,and yearly)in ozone were revealed,elucidating substantial influences of daily and yearly components on ozone periodicity.A VOC-sensitive ozone formation regime was identified,characterized by lower VOCs/NO_(x) ratios(average=0.88)and significant positive correlations between ozone and VOCs.This interplay manifested in elevated ozone duringweekends,holidays,and pandemic lockdowns.Key variables influencing ozone across diverse timescaleswere uncovered,with solar radiation and temperature driving daily and yearly ozone variations,respectively.Precursor substances,particularly VOCs,significantly shaped weekly/holiday patterns and long-term trends of ozone.Specifically,acetone,ethane,hexanal,and toluene had a notable impact on the multi-year ozone trend,emphasizing the urgency of VOC regulation.Furthermore,our observations indicated that NO_(x) primarily drived the stochastic variations in ozone,a distinguishing characteristic of regions with heavy traffic.This research provides novel insights into ozone dynamics in coastal urban areas and highlights the importance of integrating statistical and machinelearning methods in atmospheric pollution studies,with implications for targeted mitigation strategies beyond this specific region and pollutant.
基金supported in part by the Interdisciplinary Project of Dalian University(DLUXK-2023-ZD-001).
文摘Multivariate time series forecasting iswidely used in traffic planning,weather forecasting,and energy consumption.Series decomposition algorithms can help models better understand the underlying patterns of the original series to improve the forecasting accuracy of multivariate time series.However,the decomposition kernel of previous decomposition-based models is fixed,and these models have not considered the differences in frequency fluctuations between components.These problems make it difficult to analyze the intricate temporal variations of real-world time series.In this paper,we propose a series decomposition-based Mamba model,DecMamba,to obtain the intricate temporal dependencies and the dependencies among different variables of multivariate time series.A variable-level adaptive kernel combination search module is designed to interact with information on different trends and periods between variables.Two backbone structures are proposed to emphasize the differences in frequency fluctuations of seasonal and trend components.Mamba with superior performance is used instead of a Transformer in backbone structures to capture the dependencies among different variables.A new embedding block is designed to capture the temporal features better,especially for the high-frequency seasonal component whose semantic information is difficult to acquire.A gating mechanism is introduced to the decoder in the seasonal backbone to improve the prediction accuracy.A comparison with ten state-of-the-art models on seven real-world datasets demonstrates that DecMamba can better model the temporal dependencies and the dependencies among different variables,guaranteeing better prediction performance for multivariate time series.
基金supported by the National Natural Science Foundation of China (Nos. 22379121, 62005216)Basic Public Welfare Research Program of Zhejiang (No. LQ22F050013)+1 种基金Zhejiang Province Key Laboratory of Flexible Electronics Open Fund (2023FE005)Shenzhen Foundation Research Program (No. JCYJ20220530112812028)。
文摘Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
基金supported by the National Natural Science Foundation of China(Nos.52470114 and 52022104)the National Key R&D Program of China(No.2022YFC3702802)the Youth Innovation Promotion Association,CAS(No.Y2021020).
文摘In recent years,ozone has become one of the key pollutants affecting the urban air qual-ity.Direct catalytic decomposition of ozone emerges as an effective method for ozone re-moval.Field experimentswere conducted to evaluate the effectiveness of exteriorwall coat-ings with ozone decomposition catalysts for ozone removal in practical applications.ANSYS 2020R1 software was first used for simulation and analysis of ozone concentration and flow fields to investigate the decomposition boundary of these wall coatings.The results show that the exterior wall coatings with manganese-based catalysts can effectively reduce the ozone concentration near the wall coating.The ozone decomposition efficiency is nega-tively correlated with the distance fromthe coating and the decomposition boundary range is around 18 m.The decomposition boundary will increase with the increase of tempera-ture,and decrease with the increase of the wind speed and the relative humidity.These results underscore the viability of using exterior wall coatings with catalysts for controlling ozone pollution in atmospheric environments.This approach presents a promising avenue for addressing ozone pollution through self-purifying materials on building external wall.
基金sponsored by the National Natural Science Foundations of China under Grant Nos.12301315,12235007,11975131the Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ20A010009。
文摘In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables.
文摘We presented the preparation and analysis of La_(1-x)K_(x)CoO_(3)(x=0.1-0.4)catalysts,supported on microwave-absorbing ceramic carriers,using the sol-gel method.We systematically investigated the effects of various reaction conditions under microwave irradiation(0-50 W).These conditions included reaction temperatures(300-600℃),oxygen concentrations(0-6%),and varying K^(+)doping levels on the catalysts'activity.The crystalline phase,microstructure,and the catalytic activity of the catalyst were analyzed by XRD,TEM,H_2-TPR,and O_(2)-TPD.The experimental results reveal that La_(1-x)K_(x)CoO_(3)(x=0.1-0.4)catalysts consistently form homogeneous perovskite nanoparticles across different doping levels.The NO decomposition efficiency on these catalysts initially increases and then decreases with variations in doping amount,temperature,and microwave power.Additionally,an increase in oxygen concentration positively influences NO conversion rates.The optimal performance is observed with La_(0.7)K_(0.3)CoO_(3)catalyst under conditions of x=0.3,400℃,10 W microwave power,and 4%oxygen concentration,achieving a peak NO conversion rate of La_(0.7)K_(0.3)CoO_(3)catalyst is 93.1%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974154 and 12304278)the Taishan Scholars Special Funding for Construction Projects(Grant No.tstp20230622)+1 种基金the Natural Science Foundation of Shandong Province(Grant Nos.ZR2022MA004,ZR2023QA127,and ZR2024QA121)the Special Foundation of Yantai for Leading Talents above Provincial Level.
文摘As an independent thermodynamic parameter,pressure significantly influences interatomic distances,leading to an increase in material density.In this work,we employ the CALYPSO structure search and density functional theory calculations to explore the structural phase transitions and electronic properties of calcium-sulfur compounds(Ca_(x)S_(1-x),where x=1/4,1/3,1/2,2/3,3/4,4/5)under 0-1200 GPa.The calculated formation enthalpies suggest that Ca_(x)S_(1-x)compounds undergo multiple phase transitions and eventually decompose into elemental Ca and S,challenging the traditional view that pressure stabilizes and densifies compounds.The analysis of formation enthalpy indicates that an increase in pressure leads to a rise in internal energy and the PV term,resulting in thermodynamic instability.Bader charge analysis reveals that this phenomenon is attributed to a decrease in charge transfer under high pressure.The activation of Ca-3d orbitals is significantly enhanced under pressure,leading to competition with Ca-4s orbitals and S-3p orbitals.This may cause the formation enthalpy minimum on the convex hull to shift sequentially from CaS to CaS_(3),then to Ca_(3)S and Ca_(2)S,and finally back to CaS.These findings provide critical insights into the behavior of alkaline-earth metal sulfides under high pressure,with implications for the synthesis and application of novel materials under extreme conditions and for understanding element distribution in planetary interiors.
基金The Australian Research Council(DP200101197,DP230101107).
文摘Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.
基金National Key Research and Development Program of China,Grant/Award Number:2023YFB2903904。
文摘Heterogeneous graphs generally refer to graphs with different types of nodes and edges.A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs,which can be seen as a special kind of directed acyclic graph with same node and edge types as the heterogeneous graph.However,how to design proper metagraphs is challenging.Recently,there have been many works on learning suitable metagraphs from a heterogeneous graph.Existing methods generally introduce continuous weights for edges that are independent of each other,which ignores the topological structures of meta-graphs and can be ineffective.To address this issue,the authors propose a new viewpoint from tensor on learning meta-graphs.Such a viewpoint not only helps interpret the limitation of existing works by CANDECOMP/PARAFAC(CP)decomposition,but also inspires us to propose a topology-aware tensor decomposition,called TENSUS,that reflects the structure of DAGs.The proposed topology-aware tensor decomposition is easy to use and simple to implement,and it can be taken as a plug-in part to upgrade many existing works,including node classification and recommendation on heterogeneous graphs.Experimental results on different tasks demonstrate that the proposed method can significantly improve the state-of-the-arts for all these tasks.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD04076)the Guangxi Key Research and Development Projects of China(GuikeAB21238004)the Agricultural Science and Technology Innovation Program.
文摘When plants respond to drought stress,dynamic cellular changes occur,accompanied by alterations in gene expression,which often act through trans-regulation.However,the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers.Using a tensor decomposition method,we identify trans-acting expression quantitative trait loci(trans-eQTLs)linked to gene modules,rather than individual genes,which were associated with maize drought response.Module-to-trait association analysis demonstrates that half of the modules are relevant to drought-related traits.Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules,the majority of which cannot be detected based on individual gene expression.Notably,the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection.We further prioritize the genes that affect the transcriptional regulation of multiple genes in trans,as exemplified by two transcription factor genes.Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.
文摘The deployment of non-precious metal catalysts for the production of COx-free hydrogen via the ammonia decomposition reaction(ADR)presents a promising yet great challenge.In the present study,two crystal structures of α-MoC and β-Mo_(2)C catalysts with different Mo/C ratios were synthesized,and their ammonia decomposition performance as well as structural evolution in ADR was investigated.The β-Mo_(2)C catalyst,characterized by a higher Mo/C ratio,demonstrated a remarkable turnover frequency of 1.3 s^(-1),which is over tenfold higher than that ofα-MoC(0.1 s^(-1)).An increase in the Mo/C ratio of molybdenum carbide revealed a direct correlation between the surface Mo/C ratio and the hydrogen yield.The transient response surface reaction indicated that the combination of N*and N*derived from NH_(3) dissociation represents the rate-determining step in the ADR,andβ-Mo2C exhibited exceptional proficiency in facilitating this pivotal step.Concurrently,the accumulation of N*species on the carbide surface could induce the phase transition of molybdenum carbide to nitride,which follows a topological transformation.It is discovered that such phase evolution was affected by the Mo-C surface and reaction temperature simultaneously.When the kinetics of combination of N*was accelerated by rising temperatures and its accumulation on the carbide surface was mitigated,β-Mo_(2)C maintained its carbide phase,preventing nitridation during the ADR at 810℃.Our results contribute to an in-depth understanding of the molybdenum carbides’catalytic properties in ADR and highlight the nature of the carbide-nitride phase transition in the reaction.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFA1600701)the Guangdong Basic and Applied Basic Research Foundation,China(Project No.2021B1515140028)the National Natural Science Foundation of China(Grant No.12275154)。
文摘High entropy alloys(HEAs)constituted of single solid solution phase,but remains chemical inhomogeneity in nature due to its multi-principal composition.Currently,existence of nanoscale spinodal decomposition(SD)phase in matrix was found to have significant impact on the properties of HEAs.Nevertheless,the morphology evolution and the kinetics of SD is not clear,which hinders in-depth understanding of the structure-property relationship.In this study,we examine the spinodal structures in(FeCoCrNi)85(AlCu)15 HEAs at different states using in-situ small-angle neutron scattering(SANS),in conjunction with transmission electron microscopy technique.The result demonstrates that SD occurred when aging the HEA samples at temperatures ranging from 500 to 800℃,which leads to the phase constitution of NiAlCu-rich and FeCoCr-rich spinodal phases,L1_(2)ordered phases,and FCC matrix.The characteristic wavelength of SD(λ_(SD))grows from 5.31 to 51.26 nm when aging temperature rises from 500 to 800℃,which explains the enhancement of the alloy’s microhardness.The SD kinetics was unraveled by fitting the time-dependentλ_(SD)through in-situ SANS measurement at 700℃.During isothermal treatment at 700℃,theλ_(SD)increases from 10.42 to 17.43 nm with prolonged time,and SD is in the late stage from the exponential trend of theλ_(SD)over time.Moreover,comparing with aging temperature,the aging time has a relatively minor impact on the coarsening of SD.
基金the National Natural Science Foundation of China[Grant No.52270183].
文摘Exploring the factors driving the decoupling of China’s sulfur dioxide(SO_(2))emissions from economic growth(DEI)is crucial for achieving sustainable development.By analyzing the decoupling indicators and driving factors at both the generation and treatment stages of SO_(2),more effective targeted mitigation strategies can be developed.We employ the Tapio decoupling model and propose a two-stage method to examine the decoupling issues related to SO_(2).Our findings indicate that:①DEI shows a steady and significant improvement,with SO_(2)emission intensity identified as the primary driver.②for the decoupling of economic growth and SO_(2)generation,energy scale serves as the largest stimulator,while the effect of energy intensity changes from negative to positive,and pollution intensity is first positive and then negative.③For the decoupling of SO_(2)generation and SO_(2)removal,treatment efficiency leads as the largest promoter,followed by treatment intensity.Based on these results,this study recommends that China focuses more on enhancing clean energy utilization and the effectiveness of treatment processes.
基金supported by the National Key Research and Development Program of China(2020YFC1909104)National Natural Science Foundation of China(52274355)Major Science and Technology Project of Inner Mongolia Autonomous Region(2021ZD0016)。
文摘The Mountain Pass mine is recognized as one of the world's primary sources of rare earth minerals.These rare earth minerals mainly consist of bastnaesite and a small amount of monazite phosphate,which cannot be decomposed and recovered through conventional oxidative roasting and hydrochloric acid leaching process.An efficient,clean,and economical process called the"combined method"was proposed for the utilization of the Mountain Pass mine to extract rare earths from Mountain Pass rare earth concentrate(MPREC).The main steps of this process include weak oxidation atmosphere roasting,step leaching of hydrochloric acid,solid-liquid separation,the monazite slag with sulfuric acid roasting water leaching,etc.In this paper,the roasting process of MPREC under a weak oxidation atmosphere was investigated.The study examines the thermal decomposition kinetics,phase transition process,and leaching behavior of MPREC in air/CO_(2)atmosphere.Results show that,the activation energy(Ea)for MPREC thermal decomposition in air and CO_(2)atmosphere are 146 and 320 kJ/mol,respectively.At temperature above 500℃in air or above 700℃in CO_(2)atmosphere,REOF are generated from bastnaesite through an in-situ reaction with CaO,which is decomposed from CaCO_(3),to form CaF_(2)and rare earth oxide(REO).Thus,F is regulated into solid phase.In an oxidizing atmosphere,the thermal decomposition of bastnaesite is accompanied by the rapid oxidation of Ce(Ⅲ).In co ntrast,the oxidation of Ce(Ⅲ)in a CO_(2)atmosphere is significantly inhibited.At 700℃,the oxidation rate of Ce in air is 74.09%,while in a CO_(2)atmosphere,it is only 33.83%.The hydrochloric acid leaching experiment shows that,the leaching rate of rare earth after roasting at 600℃under an air atmosphere reaches to 82.9%,and it reaches 87%after roasting at 800℃under a CO_(2)atmosphere.The reduction of Ce oxidation in a weak oxidizing atmosphere significantly improves the leaching rate of Ce.