To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise mode...To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.展开更多
Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this p...Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this paper,a three-dimensional fractional-order chaotic Lorenz model of chemical reactions is discussed.Some basic dynamical properties,such as stability of equilibria,Lyapunov exponents,bifurcation diagrams,Poincarémap,and sensitivity to initial conditions,are studied.By adopting the Adomian decomposition algorithm(ADM),the numerical solution of the fractional-order system is obtained.It is found that the lowest derivative order in which the proposed system exhibits chaos is q=0.694 by applying ADM.The result has been validated by the existence of one positive Lyapunov exponent and by employing some phase diagrams.In addition,the richer dynamics of the system are confirmed by using powerful tools in nonlinear dynamic analysis,such as the 0-1 test and C_(0)complexity.Moreover,modified projective synchronization has been implemented based on the stability theory of fractional-order systems.This paper presents the application of the modified projective synchronization in secure communication,where the information signal can be transmitted and recovered successfully through the channel.MATLAB simulations are provided to show the validity of the constructed secure communication scheme.展开更多
Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The fin...Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The findings have allowed authors to develop two analytical approaches using the second Lyapunov(Lyp)method and the Gardanomethod.Since the Gardano method does not involve the development of special positive Lyp functions,it is very efficient and convenient to achieve excessive systemSYCR phenomena.Error is overcome by using Gardano and overcoming some problems in Lyp.Thus we get a great investigation into the convergence of error dynamics,the authors in this paper are interested in giving numerical simulations of the proposed model to clarify the results and check them,an important aspect that will be studied is Synchronization Complete hybrid SYCR and anti-Synchronization,by making use of the Lyapunov expansion analysis,a proposed control method is developed to determine the actual.The basic idea in the proposed way is to receive the evolution of between two methods.Finally,the present model has been applied and showing in a new attractor,and the obtained results are compared with other approximate results,and the nearly good coincidence was obtained.展开更多
A synchronization method is developed for the fluid-thermal study of hypersonic flow.Different from conventional loosely/tightly coupled methods which separately deal with the flow field and the structure temperature ...A synchronization method is developed for the fluid-thermal study of hypersonic flow.Different from conventional loosely/tightly coupled methods which separately deal with the flow field and the structure temperature field,the presented method expresses the governing equations in a unified framework so that the two fields can be calculated simultaneously.For efficiently solving the unified equations,the finite volume method together with the dual-time stepping approach is employed.Like in the flow field,the local time step is also used in the temperature field,which is determined from thermal conductivity spectral radii.In order to treat the fluid-structure interface more conveniently,an expanded virtual boundary is introduced.For validation,several fluid-thermal hypersonic flow problems are simulated.The computed results are compared with those obtained from the coupled methods and the experiment.In the continuous heating problems,the stagnation temperatures predicted by both the coupled and synchronization methods are in good agreements with the experimental data.In the unsteady flowthermal hypersonic flows,the stagnation heat fluxes predicted by the presented method and tightly coupled method are basically the same,which agree better with the experimental data than those predicted by the loosely coupled method.In terms of prediction of the stagnation temperature,the synchronization method shows better accuracy than the tightly coupled method.展开更多
An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of d...An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.展开更多
We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function ma...We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function matrix. In this paper, a systematic scheme is explored to investigate the function projective synchronization of two identical discrete-time hyperchaotic systems using the backstepping method. Additionally, FPS of two different hyperchaotic systems is also realized. Numeric simulations are given to verify the effectiveness of our scheme.展开更多
Most of the chemical plants that were put into production in earlier years did not install time synchronization servers or use signal transmission between systems for time synchronization, resulting in inconsistent ti...Most of the chemical plants that were put into production in earlier years did not install time synchronization servers or use signal transmission between systems for time synchronization, resulting in inconsistent time of various types of control systems in the chemical plants, and the time of controllers and operating stations of the systems themselves are not synchronized. This paper expounds the time status of various systems in chemical plants at the present stage, the importance of realizing plant-wide time synchronization and the realization method of time synchronization project.展开更多
Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is ...Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is systematic and can deal with a class of chaotic system′s synchronization problems, which are important in safe communication with chaotic signal. Due to the nature of backstepping method, the designed controller possesses perfect robustness and adaptation. As an example, the controller based on backstepping method is employed to synchronize Lorenz system. The numerical simulation illustrates that the method is effective. Compared with the linear feedback synchronization controller, the control law can stabilize synchronization systems at a smaller synchronization error. Therefore the controller has a good performance.展开更多
A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of...A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.展开更多
Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to ...Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lem...This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By co...In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By constructing a suitable Lyapunov–Krasovskii functional and using a reciprocally convex approach, a novel H∞ synchronization criterion for the networks concerned is established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.展开更多
The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous ef...The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous efforts that employed separation analysis and the real-valued control design, based on the quaternion-valued signum function and several related properties, a direct analytical method is proposed here and the quaternion-valued controllers are designed in order to discuss the fixed-time synchronization for the relevant quaternion-valued neural networks. In addition, the preassigned-time synchronization is investigated based on a quaternion-valued control design, where the synchronization time is preassigned and the control gains are finite. Compared with existing results, the direct method without separation developed in this article is beneficial in terms of simplifying theoretical analysis, and the proposed quaternion-valued control schemes are simpler and more effective than the traditional design, which adds four real-valued controllers. Finally, two numerical examples are given in order to support the theoretical results.展开更多
In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two i...In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two identical hyperchaotic systems by directing the scaling factor onto the desired value. With symbolic computation system Maple and Lyapunov stability theory, numerical simulations are given to perform the process of the synchronization.展开更多
This paper explores the intra-layer synchronization in duplex networks with different topologies within layers and different inner coupling patterns between,within,and across layers.Based on the Lyapunov stability met...This paper explores the intra-layer synchronization in duplex networks with different topologies within layers and different inner coupling patterns between,within,and across layers.Based on the Lyapunov stability method,we prove theoretically that the duplex network can achieve intra-layer synchronization under some appropriate conditions,and give the thresholds of coupling strength within layers for different types of inner coupling matrices across layers.Interestingly,for a certain class of coupling matrices across layers,it needs larger coupling strength within layers to ensure the intra-layer synchronization when the coupling strength across layers become larger,intuitively opposing the fact that the intra-layer synchronization is seemly independent of the coupling strength across layers.Finally,numerical simulations further verify the theoretical results.展开更多
In this paper, we consider the chaos control for 4D hyperchaotic system by two cases, known & unknown parameters based on Lyapunov stability theory via nonlinear control. We find that there are two cofactors that ...In this paper, we consider the chaos control for 4D hyperchaotic system by two cases, known & unknown parameters based on Lyapunov stability theory via nonlinear control. We find that there are two cofactors that have an effect on determining any case to achieve the control, the two cofactors are proposed in the control and the matrix that produce from the time derivative of Lyapunov function. In adding, we find some weakness cases in Lyapunov stability theory. For this reason, we design with only one controller and perform a simple change in this control in order to recognize the difference between these cases although all of the controllers are almost similar.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-the...Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.展开更多
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.52405293,52375237)China Postdoctoral Science Foundation(No.2024M754219)Shaanxi Province Postdoctoral Research Project Funding,China。
文摘To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.
文摘Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this paper,a three-dimensional fractional-order chaotic Lorenz model of chemical reactions is discussed.Some basic dynamical properties,such as stability of equilibria,Lyapunov exponents,bifurcation diagrams,Poincarémap,and sensitivity to initial conditions,are studied.By adopting the Adomian decomposition algorithm(ADM),the numerical solution of the fractional-order system is obtained.It is found that the lowest derivative order in which the proposed system exhibits chaos is q=0.694 by applying ADM.The result has been validated by the existence of one positive Lyapunov exponent and by employing some phase diagrams.In addition,the richer dynamics of the system are confirmed by using powerful tools in nonlinear dynamic analysis,such as the 0-1 test and C_(0)complexity.Moreover,modified projective synchronization has been implemented based on the stability theory of fractional-order systems.This paper presents the application of the modified projective synchronization in secure communication,where the information signal can be transmitted and recovered successfully through the channel.MATLAB simulations are provided to show the validity of the constructed secure communication scheme.
文摘Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The findings have allowed authors to develop two analytical approaches using the second Lyapunov(Lyp)method and the Gardanomethod.Since the Gardano method does not involve the development of special positive Lyp functions,it is very efficient and convenient to achieve excessive systemSYCR phenomena.Error is overcome by using Gardano and overcoming some problems in Lyp.Thus we get a great investigation into the convergence of error dynamics,the authors in this paper are interested in giving numerical simulations of the proposed model to clarify the results and check them,an important aspect that will be studied is Synchronization Complete hybrid SYCR and anti-Synchronization,by making use of the Lyapunov expansion analysis,a proposed control method is developed to determine the actual.The basic idea in the proposed way is to receive the evolution of between two methods.Finally,the present model has been applied and showing in a new attractor,and the obtained results are compared with other approximate results,and the nearly good coincidence was obtained.
基金supported by the National Natural Science Foundation of China(No.11872212)
文摘A synchronization method is developed for the fluid-thermal study of hypersonic flow.Different from conventional loosely/tightly coupled methods which separately deal with the flow field and the structure temperature field,the presented method expresses the governing equations in a unified framework so that the two fields can be calculated simultaneously.For efficiently solving the unified equations,the finite volume method together with the dual-time stepping approach is employed.Like in the flow field,the local time step is also used in the temperature field,which is determined from thermal conductivity spectral radii.In order to treat the fluid-structure interface more conveniently,an expanded virtual boundary is introduced.For validation,several fluid-thermal hypersonic flow problems are simulated.The computed results are compared with those obtained from the coupled methods and the experiment.In the continuous heating problems,the stagnation temperatures predicted by both the coupled and synchronization methods are in good agreements with the experimental data.In the unsteady flowthermal hypersonic flows,the stagnation heat fluxes predicted by the presented method and tightly coupled method are basically the same,which agree better with the experimental data than those predicted by the loosely coupled method.In terms of prediction of the stagnation temperature,the synchronization method shows better accuracy than the tightly coupled method.
基金supported by the Key Project of Science and Technology Research of Ministry of Educationof China (No. 108037)the National Natural Science Foundation of China (No. 10402008 and50535010)
文摘An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.
文摘We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function matrix. In this paper, a systematic scheme is explored to investigate the function projective synchronization of two identical discrete-time hyperchaotic systems using the backstepping method. Additionally, FPS of two different hyperchaotic systems is also realized. Numeric simulations are given to verify the effectiveness of our scheme.
文摘Most of the chemical plants that were put into production in earlier years did not install time synchronization servers or use signal transmission between systems for time synchronization, resulting in inconsistent time of various types of control systems in the chemical plants, and the time of controllers and operating stations of the systems themselves are not synchronized. This paper expounds the time status of various systems in chemical plants at the present stage, the importance of realizing plant-wide time synchronization and the realization method of time synchronization project.
文摘Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is systematic and can deal with a class of chaotic system′s synchronization problems, which are important in safe communication with chaotic signal. Due to the nature of backstepping method, the designed controller possesses perfect robustness and adaptation. As an example, the controller based on backstepping method is employed to synchronize Lorenz system. The numerical simulation illustrates that the method is effective. Compared with the linear feedback synchronization controller, the control law can stabilize synchronization systems at a smaller synchronization error. Therefore the controller has a good performance.
基金*The project supported by the Natural Science Foundations of Zhejiang Province under Grant No. Y604056 and the Doctoral Foundation of Ningbo City under Grant No. 2005A61030
文摘A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.
基金supported in part by National Natural Science Foundation of China (61101114, 61671324) the Program for New Century Excellent Talents in University (NCET-12-0401)
文摘Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
基金supported by the Basic Science Research Program Through the National Research Foundation of Korea(NRF) Funded by the Ministry of Education,Science and Technology(Grant Nos.2011-0001045 and 2011-0009273)
文摘This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(Grant No.2012-0000479)the Korea Healthcare Technology R&D Project,Ministry of Health and Welfare,Republic of Korea(Grant No.A100054)
文摘In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By constructing a suitable Lyapunov–Krasovskii functional and using a reciprocally convex approach, a novel H∞ synchronization criterion for the networks concerned is established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (61963033, 61866036, 62163035)the Key Project of Natural Science Foundation of Xinjiang (2021D01D10)+1 种基金the Xinjiang Key Laboratory of Applied Mathematics (XJDX1401)the Special Project for Local Science and Technology Development Guided by the Central Government (ZYYD2022A05)。
文摘The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous efforts that employed separation analysis and the real-valued control design, based on the quaternion-valued signum function and several related properties, a direct analytical method is proposed here and the quaternion-valued controllers are designed in order to discuss the fixed-time synchronization for the relevant quaternion-valued neural networks. In addition, the preassigned-time synchronization is investigated based on a quaternion-valued control design, where the synchronization time is preassigned and the control gains are finite. Compared with existing results, the direct method without separation developed in this article is beneficial in terms of simplifying theoretical analysis, and the proposed quaternion-valued control schemes are simpler and more effective than the traditional design, which adds four real-valued controllers. Finally, two numerical examples are given in order to support the theoretical results.
文摘In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two identical hyperchaotic systems by directing the scaling factor onto the desired value. With symbolic computation system Maple and Lyapunov stability theory, numerical simulations are given to perform the process of the synchronization.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.61573004 and 11501221)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(Grant No.ZQN-YX301)+1 种基金the Program for New Century Excellent Talents in Fujian Province University in 2016the Project of Education and Scientific Research for Middle and Young Teachers in Fujian Province,China(Grant Nos.JAT170027 and JA15030)
文摘This paper explores the intra-layer synchronization in duplex networks with different topologies within layers and different inner coupling patterns between,within,and across layers.Based on the Lyapunov stability method,we prove theoretically that the duplex network can achieve intra-layer synchronization under some appropriate conditions,and give the thresholds of coupling strength within layers for different types of inner coupling matrices across layers.Interestingly,for a certain class of coupling matrices across layers,it needs larger coupling strength within layers to ensure the intra-layer synchronization when the coupling strength across layers become larger,intuitively opposing the fact that the intra-layer synchronization is seemly independent of the coupling strength across layers.Finally,numerical simulations further verify the theoretical results.
文摘In this paper, we consider the chaos control for 4D hyperchaotic system by two cases, known & unknown parameters based on Lyapunov stability theory via nonlinear control. We find that there are two cofactors that have an effect on determining any case to achieve the control, the two cofactors are proposed in the control and the matrix that produce from the time derivative of Lyapunov function. In adding, we find some weakness cases in Lyapunov stability theory. For this reason, we design with only one controller and perform a simple change in this control in order to recognize the difference between these cases although all of the controllers are almost similar.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.
基金This work was supported by Natural Science Foundation of China(Item number:51777060,U1361109)Natural Science Foundation of Henan province(Item number:162300410117)the he innovative research team plan of Henan Polytechnic University(Item number:T2015-2).
文摘Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.