The aim of this paper is to present a new method for flight flutter modal parameter identification in noisy environment. This method employs a time-frequency (TF) filter to reduce the noise before identification, wh...The aim of this paper is to present a new method for flight flutter modal parameter identification in noisy environment. This method employs a time-frequency (TF) filter to reduce the noise before identification, which depends on the localization property of sweep excitation in TF domain. Then, a generalized total least square (GTLS) identification algorithm based on stochastic framework is applied to the enhanced data. System identification with noisy data is transformed into a generalized total least square problem, and the solution is carried out by the generalized singular value decomposition (GSVD) to avoid the intensive nonlinear optimization computation. A nearly maximum likelihood property can be achieved by 'optimally' weighted generalized total least square. Finally, the efficiency of the method is illustrated by means of flight test data.展开更多
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is define...The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.展开更多
Accurate identification of protein-coding regions (exons) in DNA sequences has been a challenging task in bioinformatics. Particularly the coding regions have a 3-base periodicity, which forms the basis of all exon ...Accurate identification of protein-coding regions (exons) in DNA sequences has been a challenging task in bioinformatics. Particularly the coding regions have a 3-base periodicity, which forms the basis of all exon identifica- tion methods. Many signal processing tools and techniques have been applied successfully for the identification task but still improvement in this direction is needed. In this paper, we have introduced a new promising model-independent time-frequency filtering technique based on S-transform for accurate identification of the coding regions. The S-transform is a powerful linear time-frequency representation useful for filtering in time-frequency domain. The potential of the proposed technique has been assessed through simulation study and the results obtained have been compared with the existing methods using standard datasets. The comparative study demonstrates that the proposed method outperforms its counterparts in identifying the coding regions.展开更多
Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects...Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods.展开更多
In order to suppress the surface wave in three-component seismic exploration, according to the polarization characteristics of body wave and surface wave, a time-frequency domain polarization filtering method based on...In order to suppress the surface wave in three-component seismic exploration, according to the polarization characteristics of body wave and surface wave, a time-frequency domain polarization filtering method based on wavelet transform was studied. A covariance matrix was constructed in the time-frequency domain for the three-component seismic data, measured the polarization parameters of seismic waves. Combining the corresponding eigenvalues and eigenvectors of the matrix, the elliptic rate and elevation angle were used as constraints, and the polarization filter function was built to separate the surface waves. The separated surface waves were inversely transformed and then were adaptively subtracted from the original records. After the polarization filtering suppressed the surface wave, the signal-to-noise ratio of the converted wave was effectively improved. It laid a good foundation for the next seismic data processing and seismic exploration development. The actual data processing results show that the method can effectively extract surface waves from three-component seismic records and avoid the interference of surface waves on seismic signals.展开更多
The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequen...The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave.展开更多
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r...Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.展开更多
In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utili...In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.展开更多
Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)...Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.展开更多
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a...The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality.展开更多
With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communicat...With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communication system.In particular,the abnormal signals may emulate the normal signals,which makes it very challenging for abnormal signal recognition.In this paper,we propose a new abnormal signal recognition scheme,which combines time-frequency analysis with deep learning to effectively identify synthetic abnormal communication signals.Firstly,we emulate synthetic abnormal communication signals including seven jamming patterns.Then,we model an abnormal communication signals recognition system based on the communication protocol between the transmitter and the receiver.To improve the performance,we convert the original signal into the time-frequency spectrogram to develop an image classification algorithm.Simulation results demonstrate that the proposed method can effectively recognize the abnormal signals under various parameter configurations,even under low signal-to-noise ratio(SNR)and low jamming-to-signal ratio(JSR)conditions.展开更多
Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-f...Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-forms,which leverage sparse coding(SC),have gained significant attention in the geosciences due to their ability to achieve high TF resolution.However,the iterative approaches typically employed in sparse TF transforms are computationally intensive,making them impractical for real seismic data analysis.To address this issue,we propose an interpretable convolutional sparse coding(CSC)network to achieve high TF resolution.The proposed model is generated based on the traditional short-time Fourier transform(STFT)transform and a modified UNet,named ULISTANet.In this design,we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm(LISTA)blocks,a specialized form of CSC.The LISTA block,which evolves from the traditional iterative shrinkage thresholding algorithm(ISTA),is optimized for extracting sparse features more effectively.Furthermore,we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet.Finally,the proposed method’s performance is subsequently validated using both synthetic and field data,demonstrating its potential for enhanced seismic data analysis.展开更多
Although guided image filtering(GIF) is known for preserving edges and fast computation,it may produce inaccurate outputs in depth map restoration.In this paper,a novel confidence-weighted GIF called mutual-structure ...Although guided image filtering(GIF) is known for preserving edges and fast computation,it may produce inaccurate outputs in depth map restoration.In this paper,a novel confidence-weighted GIF called mutual-structure weighted GIF(MSWGIF) is proposed,which replaces the mean filtering strategy in GIF during handling overlapping windows.The confidence value is composed of a depth term and a mutual-structure term,where the depth term is utilized to protect the edges of the output,and the mutual-structure term helps to select accurate windows during the structure characteristics of the guidance image are transferred to the output.Experimental results show that MSWGIF reduces the root mean square error(RMSE) by an average of 12.37%,and the average growth rate of correlation(CORR) is 0.07% on average.Additionally,the average growth rate of structure similarity index measure(SSIM) is 0.34%.展开更多
This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of t...This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of traditional TEL systems.Recognizing the critical gap in existing approaches—primarily their neglect of user emotional feedback and static learning paths—our model innovatively incorporates sentiment analysis to capture and respond to nuanced emotional feedback from users.Utilizing bidirectional encoder representations from Transformers for sentiment analysis,our system not only understands but also respects user privacy by processing feedback without revealing sensitive information.The adaptive learning rate,inspired by AdaGrad,allows our model to adjust its learning trajectory based on the sentiment scores associated with user feedback,ensuring a dynamic response to both positive and negative sentiments.This dual approach enhances the system’s adapt-ability to changing user preferences and improves its contentment understanding.Our methodology involves a comprehensive analysis of both the content of learning materials and the behaviors and preferences of learners,facilitating a more personalized learning experience.By dynamically adjusting recommendations based on real-time user data and behavioral analysis,our system leverages the collective insights of similar users and rele-vant content.We validated our approach against three datasets-MovieLens,Amazon,and a proprietary TEL dataset—and saw significant improvements in recommendation precision,F-score,and mean absolute error.The results indicate the potential of integrating sentiment analysis and adaptive learning rates into TEL recommender systems,marking a step forward in developing more responsive and user-centric educational technologies.This study paves the way for future advancements in TEL systems,emphasizing the importance of emotional intelli-gence and adaptability in enhancing the learning experience.展开更多
This paper demonstrated the generation of multi-wavelength bound state noise-like pulse(BNLP)in a dispersion-managed composite-filtered fiber laser consisting of nonlinear polarization rotation(NPR)and loop.In the cas...This paper demonstrated the generation of multi-wavelength bound state noise-like pulse(BNLP)in a dispersion-managed composite-filtered fiber laser consisting of nonlinear polarization rotation(NPR)and loop.In the case of BNLP,the generation is caused by the interaction between two noise-like pulses(NLPs)induced by the comb-filtering effect,and bound state level can be artificially controlled in the researches.Our work provides a new method for generating low-coherence pulses and establishes a research idea for the study of the comb-filtering effects.展开更多
Cultural filtering is deeply embedded in cross-cultural literary exchange and exerts a lasting influence on both the transmission and interpretation of literary works.This article examines the English translation of B...Cultural filtering is deeply embedded in cross-cultural literary exchange and exerts a lasting influence on both the transmission and interpretation of literary works.This article examines the English translation of Ba Jin’s The Family by Sidney Shapiro,focusing on the manifestations and underlying causes of cultural filtering in the translated text.The translator adopts a range of strategies-including the addition of cultural annotations,selective omission,and abridged translation of certain content-to implement various forms of cultural filtering.These choices are shaped by multiple filtering processes,such as the translator’s cultural identity and his understanding of traditional Chinese culture.While cultural filtering in cross-cultural translation is inevitable and may result in partial loss of meaning,it can also breathe new life into the source text and facilitate mutual understanding and dialogue between different cultural systems.展开更多
Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low informatio...Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low information density in dialogues,methods based on trigger enhancement have been proposed,yielding positive results.However,trigger enhancement faces challenges,which cause suboptimal model performance.First,the proportion of annotated triggers is low in DialogRE.Second,feature representations of triggers and arguments often contain conflicting information.In this paper,we propose a novel Multi-Feature Filtering and Fusion trigger enhancement approach to overcome these limitations.We first obtain representations of arguments,and triggers that contain rich semantic information through attention and gate methods.Then,we design a feature filtering mechanism that eliminates conflicting features in the encoding of trigger prototype representations and their corresponding argument pairs.Additionally,we utilize large language models to create prompts based on Chain-of-Thought and In-context Learning for automated trigger extraction.Experiments show that our model increases the average F1 score by 1.3%in the dialogue relation extraction task.Ablation and case studies confirm the effectiveness of our model.Furthermore,the feature filtering method effectively integrates with other trigger enhancement models,enhancing overall performance and demonstrating its ability to resolve feature conflicts.展开更多
Optical wireless(OW)communication systems face significant challenges such as signal attenuation due to atmospheric absorption,scattering,and noise from hardware components,which degrade detection sensitivity.To addre...Optical wireless(OW)communication systems face significant challenges such as signal attenuation due to atmospheric absorption,scattering,and noise from hardware components,which degrade detection sensitivity.To address these challenges,we propose a digital processing algorithm that combines finite impulse response filtering with dynamic synchronization based on pulse addition and subtraction.Unlike conventional methods,which typically rely solely on hardware optimization or basic thresholding techniques,the proposed approach integrates filtering and synchronization to improve weak signal detection and reduce noise-induced errors.The proposed algorithm was implemented and verified using a field-programmable gate array.Experiments conducted in an indoor OW communication environment demonstrate that the proposed algorithm significantly improves detection sensitivity by approximately 6 dB and 5 dB at communication rates of 3.5 Mbps and 5.0 Mbps,respectively.Specifically,under darkroom conditions and a bit error rate of 1×10^(-7),the detection sensitivity was improved from-38.56 dBm to-44.77 dBm at 3.5 Mbps and from-37.12 dBm to-42.29 dBm at 5 Mbps.The proposed algorithm is crucial for future capture and tracking of signals at large dispersion angles and in underwater and long-distance communication scenarios.展开更多
Aluminum electrolyte capacitors(AEC)are widely used in AC filtering as traditional filter capacitors.However,their strong rigidity,high hardness,and high-risk factor have hindered the flexible development of filter ca...Aluminum electrolyte capacitors(AEC)are widely used in AC filtering as traditional filter capacitors.However,their strong rigidity,high hardness,and high-risk factor have hindered the flexible development of filter capacitors.Flexible supercapacitors,due to their high energy density and outstanding cycle stability,are becoming one of the main directions for the development of filter capacitors in the future.This paper self-assembles a MnO_(2)-based flexible supercapacitor with high area capacitance and fast frequency response,and preliminarily verifies the feasibility of using the capacitor for AC filtering through simulation tests in Multisim.Finally,the AC filtering test of the flexible supercapacitor using an oscilloscope demonstrates that the ripple factor in the range of 2.7%to 8%,which confirms that the MnO_(2)-based flexible supercapacitor has a great AC filtering function and can replace traditional aluminum electrolyte capacitors in AC filtering,promoting the flexible development of electronic products.展开更多
How ecological and evolutionary factors affect small mammal diversity in arid regions remains largely unknown.Here,we combined the largest phylogeny and occurrence dataset of Gerbillinae desert rodents to explore the ...How ecological and evolutionary factors affect small mammal diversity in arid regions remains largely unknown.Here,we combined the largest phylogeny and occurrence dataset of Gerbillinae desert rodents to explore the underlying factors shaping present-day distribution patterns.In particular,we analyzed the relative contributions of ecological and evolutionary factors on their species diversity using a variety of models.Additionally,we inferred the ancestral range and possible dispersal scenarios and estimated the diversification rate of Gerbillinae.We found that Gerbillinae likely originated in the Horn of Africa in the Middle Miocene and then dispersed and diversified across arid regions in northern and southern Africa and western and central Asia,forming their current distribution pattern.Multiple ecological and evolutionary factors jointly determine the spatial pattern of Gerbillinae diversity,but evolutionary factors(evolutionary time and speciation rate)and habitat filtering were the most important in explaining the spatial variation in species richness.Our study enhances the understanding of the diversity patterns of small mammals in arid regions and highlights the importance of including evolutionary factors when interpreting the mechanisms underlying large-scale species diversity patterns.展开更多
文摘The aim of this paper is to present a new method for flight flutter modal parameter identification in noisy environment. This method employs a time-frequency (TF) filter to reduce the noise before identification, which depends on the localization property of sweep excitation in TF domain. Then, a generalized total least square (GTLS) identification algorithm based on stochastic framework is applied to the enhanced data. System identification with noisy data is transformed into a generalized total least square problem, and the solution is carried out by the generalized singular value decomposition (GSVD) to avoid the intensive nonlinear optimization computation. A nearly maximum likelihood property can be achieved by 'optimally' weighted generalized total least square. Finally, the efficiency of the method is illustrated by means of flight test data.
文摘The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
文摘Accurate identification of protein-coding regions (exons) in DNA sequences has been a challenging task in bioinformatics. Particularly the coding regions have a 3-base periodicity, which forms the basis of all exon identifica- tion methods. Many signal processing tools and techniques have been applied successfully for the identification task but still improvement in this direction is needed. In this paper, we have introduced a new promising model-independent time-frequency filtering technique based on S-transform for accurate identification of the coding regions. The S-transform is a powerful linear time-frequency representation useful for filtering in time-frequency domain. The potential of the proposed technique has been assessed through simulation study and the results obtained have been compared with the existing methods using standard datasets. The comparative study demonstrates that the proposed method outperforms its counterparts in identifying the coding regions.
基金Project(51675262)supported by the National Natural Science Foundation of ChinaProject(2016YFD0700800)supported by the National Key Research and Development Program of China+2 种基金Project(6140210020102)supported by the Advance Research Field Fund Project of ChinaProject(NP2018304)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2017-IV-0008-0045)supported by the National Science and Technology Major Project
文摘Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods.
文摘In order to suppress the surface wave in three-component seismic exploration, according to the polarization characteristics of body wave and surface wave, a time-frequency domain polarization filtering method based on wavelet transform was studied. A covariance matrix was constructed in the time-frequency domain for the three-component seismic data, measured the polarization parameters of seismic waves. Combining the corresponding eigenvalues and eigenvectors of the matrix, the elliptic rate and elevation angle were used as constraints, and the polarization filter function was built to separate the surface waves. The separated surface waves were inversely transformed and then were adaptively subtracted from the original records. After the polarization filtering suppressed the surface wave, the signal-to-noise ratio of the converted wave was effectively improved. It laid a good foundation for the next seismic data processing and seismic exploration development. The actual data processing results show that the method can effectively extract surface waves from three-component seismic records and avoid the interference of surface waves on seismic signals.
基金supported by the National Science and Technology Major Project of China(Grant No.2011ZX05014 and 2011ZX05008-005)
文摘The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave.
文摘Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.
基金supported in part by the National Natural Science Foundation of China(12171124,61933007)the Natural Science Foundation of Heilongjiang Province of China(ZD2022F003)+2 种基金the National High-End Foreign Experts Recruitment Plan of China(G2023012004L)the Royal Society of UKthe Alexander von Humboldt Foundation of Germany
文摘In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.
文摘Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.
基金supported by the National Natural Science(No.U19A2063)the Jilin Provincial Development Program of Science and Technology (No.20230201080GX)the Jilin Province Education Department Scientific Research Project (No.JJKH20230851KJ)。
文摘The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality.
基金supported by Natural Science Foundation of China(No.62371231)Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu under Grant BK20222001Jiangsu Provincial Key Research and Development Program(No.BE2023027).
文摘With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communication system.In particular,the abnormal signals may emulate the normal signals,which makes it very challenging for abnormal signal recognition.In this paper,we propose a new abnormal signal recognition scheme,which combines time-frequency analysis with deep learning to effectively identify synthetic abnormal communication signals.Firstly,we emulate synthetic abnormal communication signals including seven jamming patterns.Then,we model an abnormal communication signals recognition system based on the communication protocol between the transmitter and the receiver.To improve the performance,we convert the original signal into the time-frequency spectrogram to develop an image classification algorithm.Simulation results demonstrate that the proposed method can effectively recognize the abnormal signals under various parameter configurations,even under low signal-to-noise ratio(SNR)and low jamming-to-signal ratio(JSR)conditions.
基金supported by the National Natural Science Foundation of China under Grant 42474139the Key Research and Development Program of Shaanxi under Grant 2024GX-YBXM-067.
文摘Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-forms,which leverage sparse coding(SC),have gained significant attention in the geosciences due to their ability to achieve high TF resolution.However,the iterative approaches typically employed in sparse TF transforms are computationally intensive,making them impractical for real seismic data analysis.To address this issue,we propose an interpretable convolutional sparse coding(CSC)network to achieve high TF resolution.The proposed model is generated based on the traditional short-time Fourier transform(STFT)transform and a modified UNet,named ULISTANet.In this design,we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm(LISTA)blocks,a specialized form of CSC.The LISTA block,which evolves from the traditional iterative shrinkage thresholding algorithm(ISTA),is optimized for extracting sparse features more effectively.Furthermore,we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet.Finally,the proposed method’s performance is subsequently validated using both synthetic and field data,demonstrating its potential for enhanced seismic data analysis.
基金supported by the National Key Research and Development Program of China (No.2019YFB2204302)。
文摘Although guided image filtering(GIF) is known for preserving edges and fast computation,it may produce inaccurate outputs in depth map restoration.In this paper,a novel confidence-weighted GIF called mutual-structure weighted GIF(MSWGIF) is proposed,which replaces the mean filtering strategy in GIF during handling overlapping windows.The confidence value is composed of a depth term and a mutual-structure term,where the depth term is utilized to protect the edges of the output,and the mutual-structure term helps to select accurate windows during the structure characteristics of the guidance image are transferred to the output.Experimental results show that MSWGIF reduces the root mean square error(RMSE) by an average of 12.37%,and the average growth rate of correlation(CORR) is 0.07% on average.Additionally,the average growth rate of structure similarity index measure(SSIM) is 0.34%.
文摘This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of traditional TEL systems.Recognizing the critical gap in existing approaches—primarily their neglect of user emotional feedback and static learning paths—our model innovatively incorporates sentiment analysis to capture and respond to nuanced emotional feedback from users.Utilizing bidirectional encoder representations from Transformers for sentiment analysis,our system not only understands but also respects user privacy by processing feedback without revealing sensitive information.The adaptive learning rate,inspired by AdaGrad,allows our model to adjust its learning trajectory based on the sentiment scores associated with user feedback,ensuring a dynamic response to both positive and negative sentiments.This dual approach enhances the system’s adapt-ability to changing user preferences and improves its contentment understanding.Our methodology involves a comprehensive analysis of both the content of learning materials and the behaviors and preferences of learners,facilitating a more personalized learning experience.By dynamically adjusting recommendations based on real-time user data and behavioral analysis,our system leverages the collective insights of similar users and rele-vant content.We validated our approach against three datasets-MovieLens,Amazon,and a proprietary TEL dataset—and saw significant improvements in recommendation precision,F-score,and mean absolute error.The results indicate the potential of integrating sentiment analysis and adaptive learning rates into TEL recommender systems,marking a step forward in developing more responsive and user-centric educational technologies.This study paves the way for future advancements in TEL systems,emphasizing the importance of emotional intelli-gence and adaptability in enhancing the learning experience.
基金supported by the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(No.2020B1212030010)。
文摘This paper demonstrated the generation of multi-wavelength bound state noise-like pulse(BNLP)in a dispersion-managed composite-filtered fiber laser consisting of nonlinear polarization rotation(NPR)and loop.In the case of BNLP,the generation is caused by the interaction between two noise-like pulses(NLPs)induced by the comb-filtering effect,and bound state level can be artificially controlled in the researches.Our work provides a new method for generating low-coherence pulses and establishes a research idea for the study of the comb-filtering effects.
文摘Cultural filtering is deeply embedded in cross-cultural literary exchange and exerts a lasting influence on both the transmission and interpretation of literary works.This article examines the English translation of Ba Jin’s The Family by Sidney Shapiro,focusing on the manifestations and underlying causes of cultural filtering in the translated text.The translator adopts a range of strategies-including the addition of cultural annotations,selective omission,and abridged translation of certain content-to implement various forms of cultural filtering.These choices are shaped by multiple filtering processes,such as the translator’s cultural identity and his understanding of traditional Chinese culture.While cultural filtering in cross-cultural translation is inevitable and may result in partial loss of meaning,it can also breathe new life into the source text and facilitate mutual understanding and dialogue between different cultural systems.
基金supported by the National Key Research and Development Program of China(No.2023YFF0905400)the National Natural Science Foundation of China(No.U2341229).
文摘Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low information density in dialogues,methods based on trigger enhancement have been proposed,yielding positive results.However,trigger enhancement faces challenges,which cause suboptimal model performance.First,the proportion of annotated triggers is low in DialogRE.Second,feature representations of triggers and arguments often contain conflicting information.In this paper,we propose a novel Multi-Feature Filtering and Fusion trigger enhancement approach to overcome these limitations.We first obtain representations of arguments,and triggers that contain rich semantic information through attention and gate methods.Then,we design a feature filtering mechanism that eliminates conflicting features in the encoding of trigger prototype representations and their corresponding argument pairs.Additionally,we utilize large language models to create prompts based on Chain-of-Thought and In-context Learning for automated trigger extraction.Experiments show that our model increases the average F1 score by 1.3%in the dialogue relation extraction task.Ablation and case studies confirm the effectiveness of our model.Furthermore,the feature filtering method effectively integrates with other trigger enhancement models,enhancing overall performance and demonstrating its ability to resolve feature conflicts.
基金supported by National Key R&D Program of China under Grants No.2022YFB3902500,No.2022YFB2903402,and No.2021YFA0718804Natural Science Foundation of Jilin Province under Grant No.222621JC010297013Education Department of Jilin Province under Grant No.JJKH20220745KJ.
文摘Optical wireless(OW)communication systems face significant challenges such as signal attenuation due to atmospheric absorption,scattering,and noise from hardware components,which degrade detection sensitivity.To address these challenges,we propose a digital processing algorithm that combines finite impulse response filtering with dynamic synchronization based on pulse addition and subtraction.Unlike conventional methods,which typically rely solely on hardware optimization or basic thresholding techniques,the proposed approach integrates filtering and synchronization to improve weak signal detection and reduce noise-induced errors.The proposed algorithm was implemented and verified using a field-programmable gate array.Experiments conducted in an indoor OW communication environment demonstrate that the proposed algorithm significantly improves detection sensitivity by approximately 6 dB and 5 dB at communication rates of 3.5 Mbps and 5.0 Mbps,respectively.Specifically,under darkroom conditions and a bit error rate of 1×10^(-7),the detection sensitivity was improved from-38.56 dBm to-44.77 dBm at 3.5 Mbps and from-37.12 dBm to-42.29 dBm at 5 Mbps.The proposed algorithm is crucial for future capture and tracking of signals at large dispersion angles and in underwater and long-distance communication scenarios.
文摘Aluminum electrolyte capacitors(AEC)are widely used in AC filtering as traditional filter capacitors.However,their strong rigidity,high hardness,and high-risk factor have hindered the flexible development of filter capacitors.Flexible supercapacitors,due to their high energy density and outstanding cycle stability,are becoming one of the main directions for the development of filter capacitors in the future.This paper self-assembles a MnO_(2)-based flexible supercapacitor with high area capacitance and fast frequency response,and preliminarily verifies the feasibility of using the capacitor for AC filtering through simulation tests in Multisim.Finally,the AC filtering test of the flexible supercapacitor using an oscilloscope demonstrates that the ripple factor in the range of 2.7%to 8%,which confirms that the MnO_(2)-based flexible supercapacitor has a great AC filtering function and can replace traditional aluminum electrolyte capacitors in AC filtering,promoting the flexible development of electronic products.
基金supported by grants from the Third Xinjiang Scientific Expedition Program(Grant No.2022xjkk0205 to Lin Xia,No.2021xjkk0604 to Jilong Cheng)the National Natural Science Foundation of China(32170416 to Qisen Yang,31900325 to Jilong Cheng)+1 种基金the Joint Fund of National Natural Science Foundation of China(U2003203 to Lin Xia)the Key Laboratory of Zoological Systematics and Evolution of the Chinese Academy of Sciences(Y229YX5105 to Qisen Yang).
文摘How ecological and evolutionary factors affect small mammal diversity in arid regions remains largely unknown.Here,we combined the largest phylogeny and occurrence dataset of Gerbillinae desert rodents to explore the underlying factors shaping present-day distribution patterns.In particular,we analyzed the relative contributions of ecological and evolutionary factors on their species diversity using a variety of models.Additionally,we inferred the ancestral range and possible dispersal scenarios and estimated the diversification rate of Gerbillinae.We found that Gerbillinae likely originated in the Horn of Africa in the Middle Miocene and then dispersed and diversified across arid regions in northern and southern Africa and western and central Asia,forming their current distribution pattern.Multiple ecological and evolutionary factors jointly determine the spatial pattern of Gerbillinae diversity,but evolutionary factors(evolutionary time and speciation rate)and habitat filtering were the most important in explaining the spatial variation in species richness.Our study enhances the understanding of the diversity patterns of small mammals in arid regions and highlights the importance of including evolutionary factors when interpreting the mechanisms underlying large-scale species diversity patterns.