期刊文献+
共找到96,730篇文章
< 1 2 250 >
每页显示 20 50 100
A unique time-dependent deformation behavior of coral reef limestone 被引量:1
1
作者 Kai Wu Qingshan Meng +5 位作者 Le Luo Qinglong Qin Chi Wang Xinzhi Wang Tianli Shen Haozhen Ding 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1862-1875,共14页
Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological s... Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime. 展开更多
关键词 Coral reef limestone time-dependent deformation Creep mechanism Constitutive model
在线阅读 下载PDF
Viscoplastic solutions of time-dependent deformation for tunnels in swelling rock mass considering stress release 被引量:2
2
作者 Gengyun Liu Youliang Chen +1 位作者 HyonChol Rim Rafig Azzam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2053-2071,共19页
Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Xizang railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was esta... Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Xizang railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was established by introducing Abel dashpot and unsteady viscosity coefficient,considering additional swelling deformation and damage of rock caused by humidity effect.In view of the FVP model,the viscoplastic deformation solutions for rock mass surrounding tunnel under seepage conditions were derived and long-term mechanical responses of swelling rocks upon tunnel excavation were analyzed.Next,a stress release coefficient considering seepage and creep was proposed,based on which control responses considering stress release and failure mechanism of stress release measures were analyzed.The results showed that:(i)The one-dimensional(1D)FVP model has a good application for swelling rock and the three-dimensional(3D)FVP model could well describe the whole creep process of rock mass despite a much higher creep attenuation rate in the first stage of creep;and(ii)An appropriate stress release and deformation of surrounding rocks could effectively reduce the supporting resistance.However,upon a large stress release,the radius of plastic region could increase significantly,and the strength of the surrounding rock mass decreases greatly.The proposed solution could provide a theoretical framework for capturing the excavation and support responses for tunneling in swelling rock mass in consideration of time effect. 展开更多
关键词 Sichuan-Xizang railway Viscoplastic deformation Stress release Fractional model Tunneling engineering
在线阅读 下载PDF
Novel experimental techniques to assess the time-dependent deformations of geosynthetics under soil confinement 被引量:1
3
作者 Carina Maia Lins Costa Jorge Gabriel Zornberg 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期410-419,共10页
A new experimental approach to assess the impact of soil confinement on the long-term behavior of geosynthetics is presented in this paper.The experimental technique described herein includes a novel laboratory appara... A new experimental approach to assess the impact of soil confinement on the long-term behavior of geosynthetics is presented in this paper.The experimental technique described herein includes a novel laboratory apparatus and the use of different types of tests that allow generation of experimental data suitable for evaluation of the time-dependent behavior of geosynthetics under soil confinement.The soil-geosynthetic interaction equipment involves a rigid box capable of accommodating a cubic soil mass under plane strain conditions.A geosynthetic specimen placed horizontally at the mid-height of the soil mass is subjected to sustained vertical pressures that,in turn,induce reinforcement axial loads applied from the soil to the geosynthetic.Unlike previously reported studies on geosynthetic behavior under soil confinement,the equipment was found to be particularly versatile.With minor setup modifications,not only interaction tests but also in-isolation geosynthetic stress relaxation tests and soil-only tests under a constant strain rate can be conducted using the same device.Also,the time histories of the reinforcement loads and corresponding strains are generated throughout the test.Results from typical tests conducted using sand and a polypropylene woven geotextile are presented to illustrate the proposed experimental approach.The testing procedure was found to provide adequate measurements during tests,including good repeatability of test results.The soilegeosynthetic interaction tests were found to lead to increasing geotextile strains with time and decreasing reinforcement tension with time.The test results highlighted the importance of measuring not only the time history of displacements but also that of reinforcement loads during testing.The approach of using different types of tests to analyze the soilegeosynthetic interaction behavior is an innovation that provides relevant insight into the impact of soil confinement on the time-dependent deformations of geosynthetics. 展开更多
关键词 GEOSYNTHETICS GEOTEXTILE CREEP Stress relaxation Reinforced soil Long-term deformation
在线阅读 下载PDF
Tensile failure mode transitions from subzero to elevated deformation temperature in Mg-6Al-1Zn alloy
4
作者 Hafiz Muhammad Rehan Tariq Umer Masood Chaudry +3 位作者 Jeong-Rim Lee Nooruddin Ansari Mansoor Ali Tea-Sung Jun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期242-251,共10页
Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under... Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction(RD)and transverse direction(TD)at-50,25,50,and 150℃.Results reveal a transition from high strength with limited elongation at-50℃ to significant softening and maximum ductility at 150℃.TD samples consistently showed 2%-6%higher strength than RD;however,this yield anisotropy diminished at 150℃ due to the shift from twinning to thermally activated slip and recovery.Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature.Electron backscattered diffraction(EBSD)analysis confirmed twinning-driven grain refinement at low temperatures,while deformation at high temperatures involved grain elongation along shear zones,enabling greater strain accommodation before material failure. 展开更多
关键词 Mg alloy deformation temperature twinning dynamics grain refinement dynamic recovery fracture mechanics
在线阅读 下载PDF
Ultrafast Laser Shock Straining in Chiral Chain 2D Materials:Mold Topology‑Controlled Anisotropic Deformation
5
作者 Xingtao Liu Danilo de Camargo Branco +5 位作者 Licong An Mingyi Wang Haoqing Jiang Ruoxing Wang Wenzhuo Wu Gary J.Cheng 《Nano-Micro Letters》 2026年第3期274-289,共16页
Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study el... Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study elucidates the fundamental mechanisms of ultrafast laser shock imprinting(LSI)in two-dimensional tellurium(Te),establishing a direct relationship between strain field orientation,mold topology,and anisotropic structural evolution.This is the first demonstration of ultrafast LSI on chiral chain Te unveiling orientation-sensitive dislocation networks.By applying controlled strain fields parallel or transverse to Te’s helical chains,we uncover two distinct deformation regimes.Strain aligned parallel to the chain’s direction induces gliding and rotation governed by weak interchain interactions,preserving covalent intrachain bonds and vibrational modes.In contrast,transverse strain drives shear-mediated multimodal deformations—tensile stretching,compression,and bending—resulting in significant lattice distortions and electronic property modulation.We discovered the critical role of mold topology on deformation:sharp-edged gratings generate localized shear forces surpassing those from homogeneous strain fields via smooth CD molds,triggering dislocation tangle formation,lattice reorientation,and inhomogeneous plastic deformation.Asymmetrical strain configurations enable localized structural transformations while retaining single-crystal integrity in adjacent regions—a balance essential for functional device integration.These insights position LSI as a precision tool for nanoscale strain engineering,capable of sculpting 2D material morphologies without compromising crystallinity.By bridging ultrafast mechanics with chiral chain material science,this work advances the design of strain-tunable devices for next-generation electronics and optoelectronics,while establishing a universal framework for manipulating anisotropic 2D systems under extreme strain rates.This work discovered crystallographic orientation-dependent deformation mechanisms in 2D Te,linking parallel strain to chain gliding and transverse strain to shear-driven multimodal distortion.It demonstrates mold geometry as a critical lever for strain localization and dislocation dynamics,with sharp-edged gratings enabling unprecedented control over lattice reorientation.Crucially,the identification of strain field conditions that reconcile severe plastic deformation with single-crystal retention offers a pathway to functional nanostructure fabrication,redefining LSI’s potential in ultrafast strain engineering of chiral chain materials. 展开更多
关键词 Tellurene Laser shock imprinting Strain engineering Anisotropic deformation Chiral chain semiconductor Dislocation dynamics
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
6
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Time-dependent squeezing deformation mechanism of tunnels in layered soft-rock stratum under high geo-stress 被引量:6
7
作者 CHEN Zi-quan HE Chuan +1 位作者 WANG Jun MA Chun-chi 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1371-1390,共20页
Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of ... Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of deep-buried softrock tunnel by means of a combination of field observations and a numerical method.First,a new classification criterion for large deformations based on the power exponent variation law between the deformation and the strength-stress ratio is proposed.Then,the initial damage tensor reflecting the bedding plane(joint)distribution and an equivalent damage evolution equation derived from the viscoplastic strain are introduced based on the geometric research method,i.e.,a new rheological damage model(RDL model)of layered soft rock is established consisting of elastic,viscous,viscoelastic,viscoplastic and plastic elements.A field test was conducted on the Maoxian tunnel in Sichuan province,southwestern China,which is in broken phyllite(layered soft rock)under high geo-stress.The tunnel has experienced large deformation due to serious squeezing pressure,thus we adopted double primary support method to overcome the supporting structure failure problems.The rheological parameters of phyllite in the Maoxian tunnel were recognized by using SA-PSO optimization,and the RDL model does a good job in describing the time-dependent deformation behavior of a layered soft-rock tunnel under high geo-stress.Thus,the RDL model was used to investigate the supporting effect and bearing mechanism of the double primary support method.Compared with the single primary support method,the surrounding rock pressure,secondary lining force,surrounding rock deformation,and the depth of the damage to the rock mass was reduced by 40%-60%after the double primary support method was used. 展开更多
关键词 deformation mechanism Layered soft rock tunnel High geostress Large squeezing deformation Rheological damage model
原文传递
A time-dependent measuring system for welding deformation 被引量:2
8
作者 蔡志鹏 赵海燕 +2 位作者 鹿安理 史清宇 施光凯 《China Welding》 EI CAS 2002年第1期25-28,共4页
In this paper the establishment and application of a time dependent measuring system for welding deformation are presented which is established with high quality sensors shielded from strong welding interference. By ... In this paper the establishment and application of a time dependent measuring system for welding deformation are presented which is established with high quality sensors shielded from strong welding interference. By using this system, vertical and horizontal displacements of the high temperature area are surveyed at the same time. And this system is also used for monitoring and controlling the deformation of real welded structures. 展开更多
关键词 time dependent measuring system welding deformation
在线阅读 下载PDF
Analytical model for predicting time-dependent lateral deformation of geosynthetics-reinforced soil walls with modular block facing 被引量:1
9
作者 Luqiang Ding Chengzhi Xiao Feilong Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期711-725,共15页
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general... To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed. 展开更多
关键词 GEOSYNTHETICS Creep behavior Geosynthetics-reinforced soil(GRS)walls Lateral deformation Analytical model
在线阅读 下载PDF
Image Reconstruction from Fan-Beam Projections without Back-Projection Weight in a 2-D Dynamic CT: Compensation of Time-Dependent Rotational, Uniform Scaling and Translational Deformations 被引量:1
10
作者 A. V. Narasimhadhan Aman Sharma Dipen Mistry 《Open Journal of Medical Imaging》 2013年第4期136-143,共8页
In a dynamic CT, the acquired projections are corrupted due to strong dynamic nature of the object, for example: lungs, heart etc. In this paper, we present fan-beam reconstruction algorithm without position-dependent... In a dynamic CT, the acquired projections are corrupted due to strong dynamic nature of the object, for example: lungs, heart etc. In this paper, we present fan-beam reconstruction algorithm without position-dependent backprojection weight which compensates for the time-dependent translational, uniform scaling and rotational deformations occurring in the object of interest during the data acquisition process. We shall also compare the computational cost of the proposed reconstruction algorithm with the existing one which has position-dependent weight. To accomplish the objective listed above, we first formulate admissibility conditions on deformations that is required to exactly reconstruct the object from acquired sequential deformed projections and then derive the reconstruction algorithm to compensate the above listed deformations satisfying the admissibility conditions. For this, 2-D time-dependent deformation model is incorporated in the fan-beam FBP reconstruction algorithm with no backprojection weight, assuming the motion parameters being known. Finally the proposed reconstruction algorithm is evaluated with the motion corrupted projection data simulated on the computer. 展开更多
关键词 Fan-Beam Reconstruction Algorithm Hilbert Filter Virtual Acquisition Geometry Equiangular Detector Geometry ROTATIONAL UNIFORM SCALING and Translational deformation Position Dependent BACK-PROJECTION Weight
在线阅读 下载PDF
A physics knowledge-based surrogate model framework for timedependent slope deformation:Considering water effect and sliding states
11
作者 Wenyu Zhuang Yaoru Liu +3 位作者 Kai Zhang Qingchao Lyu Shaokang Hou Qiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5416-5436,共21页
The surrogate model serves as an efficient simulation tool during the slope parameter inversion process.However,the creep constitutive model integrated with dynamic damage evolution poses challenges in development of ... The surrogate model serves as an efficient simulation tool during the slope parameter inversion process.However,the creep constitutive model integrated with dynamic damage evolution poses challenges in development of the required surrogate model.In this study,a novel physics knowledge-based surrogate model framework is proposed.In this framework,a Transformer module is employed to capture straindriven softening-hardening physical mechanisms.Positional encoding and self-attention are utilized to transform the constitutive parameters associated with shear strain,which are not directly time-related,into intermediate latent features for physical loss calculation.Next,a multi-layer stacked GRU(gated recurrent unit)network is built to provide input interfaces for time-dependent intermediate latent features,hydraulic boundary conditions,and water-rock interaction degradation equations,with static parameters introduced via external fully-connected layers.Finally,a combined loss function is constructed to facilitate the collaborative training of physical and data loss,introducing time-dependent weight adjustments to focus the surrogate model on accurate deformation predictions during critical phases.Based on the deformation of a reservoir bank landslide triggered by impoundment and subsequent restabilization,an elasto-viscoplastic constitutive model that considers water effect and sliding state dependencies is developed to validate the proposed surrogate model framework.The results indicate that the framework exhibits good performance in capturing physical mechanisms and predicting creep behavior,reducing errors by about 30 times compared to baseline models such as GRU and LSTM(long short-term memory),meeting the precision requirements for parameter inversion.Ablation experiments also confirmed the effectiveness of the framework.This framework can also serve as a reference for constructing other creep surrogate models that involve non-time-related across dimensions. 展开更多
关键词 Reservoir bank slope time-dependent deformation Elasto-viscoplastic constitutive model Physics knowledge-based deep learning Surrogate model
在线阅读 下载PDF
Achieving ultrahigh strength and ductility via high-density nanoprecipitates triggering multiple deformation mechanisms in a dual-aging high-entropy alloy with precold deformation 被引量:1
12
作者 Liyuan Liu Yang Zhang Zhongwu Zhang 《Journal of Materials Science & Technology》 2025年第2期27-41,共15页
How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will... How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity. 展开更多
关键词 High-entropy alloy Precold deformation Precipitation behavior Ultrahigh strength deformation mechanism
原文传递
Interaction between dynamic recrystallization and phase transformation of Ti-43Al-4Nb-1Mo-0.2B alloy during hot deformation 被引量:2
13
作者 Xiaofei Chen Bin Tang +5 位作者 Beibei Wei Wenxin Xu Biao Ma Jinhua Dai Guoming Zheng Jinshan Li 《Journal of Materials Science & Technology》 2025年第11期130-142,共13页
Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-... Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase. 展开更多
关键词 TiAl alloy Hot deformation Dynamic recrystallization Phase transformation
原文传递
Electrochemical cutting with flexible electrode of controlled online deformation 被引量:1
14
作者 Lin Liu Zhengyang Xu +1 位作者 Yuheng Hao Yunlong Teng 《International Journal of Extreme Manufacturing》 2025年第1期453-480,共28页
Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shroude... Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles. 展开更多
关键词 electrochemical machining online deformation flexible electrode
在线阅读 下载PDF
Microscopic analysis of deformation and water-salt transport in chlorine saline soils under unidirectional freezing in cold and arid zones 被引量:1
15
作者 Chenxi Dong Xin Chen +4 位作者 Yanhu Mu Zhao Duan Qiang Xue Chuanbo Sun Jiangshan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2445-2460,共16页
Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced f... Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering. 展开更多
关键词 Chlorine saline soils MICROSTRUCTURE Unidirectional freezing Water-salt transport deformation
在线阅读 下载PDF
Deformation Monitoring of the Embankments Using Multitemporal InSAR:a Case Study of the Kangshan Embankment 被引量:1
16
作者 XIONG Jiacheng HE Xiufeng +2 位作者 Alfred STEIN YU Juanjuan CHANG Ling 《Journal of Geodesy and Geoinformation Science》 2025年第1期12-29,共18页
River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of... River embankments are designed to defend against floods over coastal and riparian areas.It is important to early detect unexpected damages on embankments before they exacerbate.To continuously monitor the stability of the embankments and efficiently recognize such potential damages,this study takes SAR(Synthetic Aperture Radar)derived deformation as an indicator of the embankment instability,and customizes a multi-temporal InSAR(Interferometric SAR)approach-small baseline subset.Specifically,during InSAR processing,we apply a two-step amplitude difference dispersion threshold method to extract InSAR measurement points,thus improving the point density within the embankment.We applied this method to the Kangshan Embankment(KE)using 147 Sentinel-1 acquired between 2017 and 2021.We categorized KE into Waterside Slope(WS),Embankment Top(ET),and Landside Slope(LS)using InSAR height estimation.Given the dominance of downslope movement,we developed a projection matrix from InSAR-derived deformation in the satellite line-of-sight direction onto WS and LS.The study shows that KE was generally stable during the five-year period,while WS,ET,and LS experienced different deformation processes.For instance,seasonal variation was observed from the deformation time series,especially between every April and November.We applied the principal component analysis to the time-series displacement and analyzed the results in conjunction with the rainfall data of Kangshan Township.It showed that deformation due to rainfall equals 80.93%,81.30%,and 82.46%of the total deformation for WS,ET,and LS,respectively,indicating that rainfall is one of the environmental driving factors affecting the deformations.We conclude that the proposed methodology is suited for systematic embankment monitoring and identifies major driving forces. 展开更多
关键词 EMBANKMENT amplitude difference dispersion slope deformation INSAR Sentinel-1
在线阅读 下载PDF
Making titanium alloys ultrahigh strength and toughness synergy through deformation kinks-me diate d hierarchical α-precipitation 被引量:1
17
作者 Keer Li Wei Chen +2 位作者 Jinyu Zhang Shewei Xin Jun Sun 《Journal of Materials Science & Technology》 2025年第4期142-159,共18页
Titanium alloys engineered in structural applications achieve ultrahigh strength primarily through precipitation strengthening of secondary α-phase(αs)during aging,while they often experience compromised ductility a... Titanium alloys engineered in structural applications achieve ultrahigh strength primarily through precipitation strengthening of secondary α-phase(αs)during aging,while they often experience compromised ductility and toughness due to traditional strength-toughness tradeoff.In this study,we propose a novel strategy to address this conflict by introducing deformation kinks prior to conventional cold rolling(CR)and aging processes.These kinks are produced by cold forging(CF)to create macroscopic lamellar structures in β-grains,which alter strain partitioning during subsequent CR and ultimately tailor α_(s)-precipitation upon aging.As a result,an ultrafine duplex(αe+β)-structure is formed within kink interi-ors,while hierarchicalαs-precipitates are generated in the external β-matrix.This unique microstructure effectively enhances dislocation activity,promotes uniform plastic strain distribution and impedes crack propagation.Consequently,a simple Ti-V binary titanium alloy exhibits exceptional properties with ultra-high strength∼1636 MPa,decent ductility∼5.4% and appreciable fracture toughness∼36.1 MPa m^(1/2).The synergetic properties surpass those obtained through traditional CR and aging processes for the alloy and even outperform numerous multielement engineering titanium alloys reported in literature.Our findings open up a new avenue for overcoming the strength-toughness tradeoffof ultrahigh-strength titanium alloys,and also offer a facile production route towards structural materials for advanced performance. 展开更多
关键词 Titanium alloys Strength-toughness synergy KINK PRECIPITATION deformation and damage
原文传递
Deformation mechanism and treatment technology research of coal pillars in acute inclined goafs under expressway 被引量:1
18
作者 Bao Wei-Xing Ma Zhi-Wei +1 位作者 Lai Hong-Peng Chen Rui 《Applied Geophysics》 2025年第1期161-175,235,共16页
When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highwa... When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and field monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confirmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects. 展开更多
关键词 model test acute inclined goafs SUBGRADE deformation mechanism treatment technology
在线阅读 下载PDF
A theoretical and experimental study of deformation mechanism dictated by disclination-dislocation coupling in Mg alloys at different temperatures 被引量:1
19
作者 Chunfeng Du Yipeng Gao +5 位作者 Yizhen Li Quan Li Min Zha Cheng Wang Hailong Jia Hui-Yuan Wang 《Journal of Materials Science & Technology》 2025年第5期176-188,共13页
Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dyna... Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials. 展开更多
关键词 Magnesium alloys Dislocations Grain boundaries Plastic deformation Grain rotation Disclination-dislocation coupling
原文传递
Deformation analysis of ground and existing tunnel induced by overlapped curved shield tunneling 被引量:1
20
作者 Yingnan Liu Huayang Lei +2 位作者 Liang Shi Gang Zheng Mengting Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期795-809,共15页
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield... The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction. 展开更多
关键词 Overlapped curved shield tunneling Analytical solution Ground deformation Existing tunnel Overcutting mode
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部