期刊文献+
共找到319篇文章
< 1 2 16 >
每页显示 20 50 100
Seismic anisotropy and upper mantle dynamics in Alaska:A review of shear wave splitting analyses
1
作者 Zhaofeng Jin Yuchen Yang +7 位作者 Muhammad Ishaidir Siregar Zihao Mu S.M.Ariful Islam Qichao Zhao Dan Wang Fan Zhang Xugang Yang Liwei Song 《Earthquake Research Advances》 CSCD 2024年第2期72-81,共10页
Shear wave splitting(SWS)is regarded as the most effective geophysical method to delineate mantle flow fields by detecting seismic azimuthal anisotropy in the earth's upper mantle,especially in tectonically active... Shear wave splitting(SWS)is regarded as the most effective geophysical method to delineate mantle flow fields by detecting seismic azimuthal anisotropy in the earth's upper mantle,especially in tectonically active regions such as subduction zones.The Aleutian-Alaska subduction zone has a convergence rate of approximately 50 mm/yr,with a trench length reaching nearly 2800 km.Such a long subduction zone has led to intensive continental deformation and numerous strong earthquakes in southern and central Alaska,while northern Alaska is relatively inactive.The sharp contrast makes Alaska a favorable locale to investigate the impact of subduction on mantle dynamics.Moreover,the uniqueness of this subduction zone,including the unusual subducting type,varying slab geometry,and atypical magmatic activity and composition,has intrigued the curiosity of many geoscientists.To identify different sources of seismic anisotropy beneath the Alaska region and probe the influence of a geometrically varying subducting slab on mantle dynamics,extensive SWS analyses have been conducted in the past decades.However,the insufficient station and azimuthal coverage,especially in early studies,not only led to some conflicting results but also strongly limited the in-depth investigation of layered anisotropy and the estimation of anisotropy depth.With the completion of the Transportable Array project in Alaska,recent studies have revealed more detailed mantle structures and characteristics based on the dense station coverage and newly collected massive seismic data.In this study,we review significant regional-and continental-scale SWS studies in the Alaska region and conclude the mantle flow fields therein,to understand how a geometrically varying subducting slab alters the regional mantle dynamics.The summarized mantle flow mechanisms are believed to be conducive to the understanding of seismic anisotropy patterns in other subduction zones with a complicated tectonic setting. 展开更多
关键词 Seismic anisotropy shear wave splitting Mantle flow Alaska subduction zone SLAB
在线阅读 下载PDF
Shear-wave splitting beforeand after the 1999 Xiuyan earthquake in Liaoning, China 被引量:15
2
作者 太龄雪 高原 +3 位作者 曹凤娟 石玉涛 吴晶 焦明若 《地震学报》 CSCD 北大核心 2008年第4期340-354,共15页
Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) eart... Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) earthquake in November 29, 1999 with SAM method. The results show that the predominant polarizations of fast shear-waves at YK is in direction of ENE-WSW, consistent with the direction of regional principal compressive stress and also consistent with the direction of the regional tectonic stress field in North China; time-delays increasing before Xiuyan earthquake may shows accumulation of stress before earthquake. The predominant polarizations of fast shear-waves at YK are also related to the spatial distribution of small earthquakes and correlate with the fault strike. The histogram of monthly average polarizations of fast shear-waves shows that polarizations of fast shear-waves also seems to change from two months before the earthquake, but it still needs more data for verification. 展开更多
关键词 岫岩地震 剪切波分裂 偏振方向 时间延迟
在线阅读 下载PDF
Variational characteristics of shear-wave splitting on the 2001 Shidian earthquakes in Yunnan, China 被引量:21
3
作者 高原 梁维 +5 位作者 丁香 薛艳 蔡明军 刘希强 苏有锦 彭立国 《地震学报》 CSCD 北大核心 2004年第6期576-582,共7页
In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digi... In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes. 展开更多
关键词 剪切波分裂 时间变化 地震应力预测 云南施甸地震 SAM分析
在线阅读 下载PDF
The characteristics of shear wave splitting in the source region of the April 20,2013 Lushan earthquake 被引量:2
4
作者 Sha Liu Jiansi Yang +3 位作者 Baofeng Tian Yu Zheng Xudong Jiang Zhiqiang Xu 《Earthquake Science》 2013年第3期223-228,共6页
Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams,... Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams, this paper preliminarily contains the polarization directions of fast shear wave and the time-delays of split shear waves at every station, and analyzes the crustal anisotropic characteristics in the source region. In the study area, the polarization direc- tions at stations BAX, TQU, L 132, L 133, L 134, and L 135 are northeast, which is consistent with the strike of Dachuan- Shuangshi fault. There are two polarization directions at MDS and L131, which are northeast and southeast. The scatter of polarization directions suggests the complex stress field around these two stations where two faults intersect. For the normalized time-delays at every station, the range is 1.02-8.64 ms/km. The largest time-delay is from L134 which is closest to the mainshock, and the smallest one is from L133. The variations in time-delays show the decreasing at stations BAX, L134, and L135 because of the stress-relaxation after earthquake. 展开更多
关键词 Lushan earthquake shear wavesplitting Polarization direction of fast shear wave time-delay of split shear wave
在线阅读 下载PDF
Crack-induced anisotropy in the crust from shear wave splitting observed in Tangshan region,North China 被引量:19
5
作者 高原 郑斯华 孙勇 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第3期351-363,共13页
Using the cross correlation function analysis method, this paper discusses shear wave splitting and crack-inducedanisotropy in the crust beneath Tangshan, North China, by the digital data from Tangshan strong ground m... Using the cross correlation function analysis method, this paper discusses shear wave splitting and crack-inducedanisotropy in the crust beneath Tangshan, North China, by the digital data from Tangshan strong ground monon temporary arrays. Sixteen of twenty-one stations in the arrays recorded earthquake events available forstudying from 1982 to 1984. Having calculated 131 available records, we get slower shear wave time delay r andfaster shear wave polarization azimuth Paz in Tangshan region, and the cracks density s is got further fromthem. The analysis shows that the stress field is very complicated in Tangshan region and has strongly regionalfeature. Because of the complicated distribution of faults, different shear wave splitting characteristics are shownin 16 stations, scattered r and different Paz. And they also were observed that the r and PaZ values were diversewithin the time scale of hours in more than one station. In Tangshan region the average results of r, Paz and Bare 0. 0071 s. km-1, northwest-west near to east-west and 0.022 respectively. Meantime, the standard devia.tions were calculated in this paper. 展开更多
关键词 crack anisotropy Tangshan cross-correlation function shear wave splitting
在线阅读 下载PDF
Variations in shear wave splitting during aftershocks of the Luquan earthquake in Yunnan Province 被引量:4
6
作者 李白基 《Acta Seismologica Sinica(English Edition)》 CSCD 1996年第2期289-297,共9页
Shear wave splitting has been measured from analyzing the three-component digital seismograms recorded at Guiquan station after the 1985 Ms6 1 Luquan earthquake in Yunnan Province. The variations in parameters ofshear... Shear wave splitting has been measured from analyzing the three-component digital seismograms recorded at Guiquan station after the 1985 Ms6 1 Luquan earthquake in Yunnan Province. The variations in parameters ofshear wave splitting with time for over 100 aftershocks have two periods, the local stress Period and the regionalstress period. In the local stress period, there exist two vertical, paralell crack sets intersecting at about (50-60°), both affect on the propagation of S-waves, and the local stress is slightly stronger than the regional stress.With the activity of aftershock going down and the local stress dying away, it is returned to the state of the regional stress in the focal area. The polarizations of the fast split S-wave and their period variations are identicalwith the azimuths and changes of the principal compressive stress axis of focal stress field inferred independentlyfrom earthquake mechanisms, hense, it is interpreted that the shear wave splitting is the effects of anisotropy ofEDA cracks controlled by stress field. The time delay of the slow split S-wave, except the difference betweenthe two periods shows in some examples that it increases in a few hours before an event and decreases in a fewdays after an event on the individual background of period. 展开更多
关键词 AFTERSHOCKS shear wave splitting stress field Luquan earthquake.
在线阅读 下载PDF
Stress-dependent shear wave splitting and permeability in fractured porous rock 被引量:5
7
作者 Daisuke Katsuki Marte Gutierrez Abdulhadi Almrabat 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2019年第1期1-11,共11页
It is well known that shear wave propagates slower across than parallel to a fracture, and as a result, a travelling shear wave splits into two directions when it encounters a fracture. Shear wave splitting and permea... It is well known that shear wave propagates slower across than parallel to a fracture, and as a result, a travelling shear wave splits into two directions when it encounters a fracture. Shear wave splitting and permeability of porous rock core samples having single fracture were experimentally investigated using a high-pressure triaxial cell, which can measure seismic shear wave velocities in two directions mutually perpendicular to the sample axis in addition to the longitudinal compressive wave velocity. A single fracture was created in the samples using a modified Brazilian split test device, where the cylindrical sample edges were loaded on two diametrically opposite lines by sharp guillotines along the sample length. Based on tilt tests and fracture surface profilometry, the method of artificially induced tensile fracture in the sample was found to create repeatable fracture surfaces and morphologies. Seismic velocities of the fractured samples were determined under different levels of stress confinement and fracture shear displacement or mismatch. The effective confining stress was varied from 0.5 MPa to55 MPa, while the fractures were mismatched by 0 mm, 0.45 mm and 1 mm. The degree of matching of the fracture surfaces in the core samples was evaluated using the joint matching coefficient(JMC). Shear wave splitting, as measured by the difference in the magnitudes of shear wave velocities parallel(V_(S1))and perpendicular(V_(S2)) to the fracture, is found to be insensitive to the degree of mismatching of the fracture joint surfaces at 2 MPa, and decreased and approached zero as the effective stress was increased.Simple models for the stress-and JMC-dependent shear wave splitting and fractured rock permeability were developed based on the experimental observations. The effects of the joint wall compressive strength(JCS), JMC and stress on the stress dependency of joint aperture were discussed in terms of hydro-mechanical response. Finally, a useful relationship between fractured rock permeability and shear wave splitting was found after normalization by using JMC. 展开更多
关键词 Fractured rock SANDSTONE Stress dependency shear wave splitting wave velocity PERMEABILITY Fracture stiffness Elastic modulus
在线阅读 下载PDF
Shear-wave splitting in the crust:Regional compressive stress from polarizations of fast shear-waves 被引量:21
8
作者 Yuan Gao Yutao Shi +1 位作者 Jing Wu Lingxue Tai 《Earthquake Science》 CSCD 2012年第1期35-45,共11页
When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave ... When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave (PFS) is parallel to both the strike of the cracks and the direction of maximum horizontal stress, therefore it is possible to use PFS to study stress in the crust. This study discusses several examples in which PFS is applied to deduce the compressive stress in North China, Longmenshan fault zone of east edge of Tibetan plateau and Yunnan zone of southeast edge of Tibetan plateau, also discusses temporal variations of PFS orientations of 1999 Xiuyan earthquake sequences of northeastern China. The results are consistent to those of other independent traditional stress measurements. There is a bridge between crustal PFS and the crustal principal compressive stress although there are many unclear disturbance sources. This study suggests the PFS results could be used to deduce regional and in situ principal compressive stress in the crust only if there are enough seismic stations and enough data. At least, PFS is a useful choice in the zone where there are a large number of dense seismic stations. 展开更多
关键词 polarization of fast shear-wave shear-wave splitting compressive stress in the crust seismic anisotropy
在线阅读 下载PDF
Upper crustal anisotropy from local shear-wave splitting and crust-mantle coupling of Yunnan,SE margin of Tibetan Plateau 被引量:5
9
作者 Bo Zhang Shuangxi Zhang +1 位作者 Tengfei Wu Yujin Hua 《Geodesy and Geodynamics》 2018年第4期302-311,共10页
The upper crustal anisotropy of Yunnan area, SE margin of Tibetan Plateau, is investigated by measuring the shear wave splitting of local earthquakes. The mean value of the measured delay times is 0.054 s and far less... The upper crustal anisotropy of Yunnan area, SE margin of Tibetan Plateau, is investigated by measuring the shear wave splitting of local earthquakes. The mean value of the measured delay times is 0.054 s and far less than that from Pms splitting analysis, indicating that the crustal anisotropy is contributed mostly from mid-lower crust. The fast polarization directions are mostly sub-parallel to the maximum horizontal compression directions while the stations near fault zones show fault-parallel fast polarization directions, suggesting both stress and geological structure contribute to the upper crust anisotropy.Comparing fast polarization directions from shear wave splitting of local earthquakes and Pms, large angle differences are shown at most stations, implying different anisotropy properties between upper and mid-lower crust. However, in southwestern Yunnan, the fast polarization directions of Pms and Swave splitting are nearly parallel, and the stress and surface strain rate directions show strong correlation, which may indicate that the surface and deep crust deformations can be explained by the same mechanism and the surface deformation can represent the deformation of the whole crust. Therefore,the high correlation between surface strain and mantle deformation in this area suggests the mechanical coupling between crust and mantle in southwestern Yunnan. In the rest region of Yunnan, the crustmantle coupling mechanisms are supported by the lack of significant crustal anisotropy with Ne S fast polarization directions from Pms splitting. Therefore, we conclude that the crust and upper mantle are coupled in Yunnan, SE margin of Tibetan Plateau. 展开更多
关键词 shear wave splitting Stress Strain rate Yunnan area Crust-mantle coupling
原文传递
Shear wave splitting analysis of local earthquakes from dense arrays in Shimian,Sichuan 被引量:3
10
作者 Sha Liu Baofeng Tian 《Earthquake Science》 2023年第1期52-63,共12页
The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu... The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy. 展开更多
关键词 shear wave splitting polarization direction of the fast shear wave regional principal compressive stress dense array Citation:Liu S and Tian BF(2023).shear wave splitting analysis of local earthquakes from dense arrays in Shimian Sichuan.
在线阅读 下载PDF
Seismic anisotropy beneath the Chinese Mainland: Constraints from shear wave splitting analyses 被引量:4
11
作者 Lingxia Gao Daoyuan Sun 《Earthquake Research Advances》 CSCD 2021年第4期9-21,共13页
We use earthquakes recorded by the China National Seismic Network from 2015 to 2019 and measure shear wave splitting parameters of SKS to study the anisotropic characteristics beneath the mainland of China.In general,... We use earthquakes recorded by the China National Seismic Network from 2015 to 2019 and measure shear wave splitting parameters of SKS to study the anisotropic characteristics beneath the mainland of China.In general,the fast directions change from nearly E-W in western China(northwest China and Qinghai-Tibetan Plateau)to nearly N-S in central China(Ordos and Sichuan-Yunnan),and then turn to approximately E-W in eastern China(North and South China).The delay times of slow wave in eastern China are about 1.0-1.7 s,larger than those in central and western China(about 0.6-1.0 s).In addition,the fast directions in eastern China are highly consistent with the plate motion direction and horizontal GPS velocities with respect to Eurasia,indicating that the observed anisotropy is mainly from the asthenosphere which is strongly coupled to the overlying lithosphere.However,the fast directions in western China are mostly in accord with the strike of the surface structures(such as faults),possibly due to the directional arrangement of crystal lattices caused by shear deformation under tectonic activities. 展开更多
关键词 shear wave splitting ANISOTROPY SKS phase
在线阅读 下载PDF
Variational characteristics of shear-wave splitting on the 2001 Shidian earthquakes in Yunnan, China 被引量:9
12
作者 GAO Yuan LIANG Wei +5 位作者 DING Xiang XUE Yan CAI Ming-jun LIU Xi-qiang SU You-jin PENG Li-guo 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第6期635-641,共7页
In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digi... In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes. 展开更多
关键词 shear-wave splitting temporal change earthquake stress-forecasting Shidian earthquakes SAM analysis
在线阅读 下载PDF
The Character of Shear-wave Splitting in Marble in the Critical State of Rupture 被引量:2
13
作者 Gao YuanCenter for Analysis and Prediction, China Seismological Burean, Beijing 100036, China 《Earthquake Research in China》 2001年第1期8-14,共7页
This paper mainly observed and analyzed the character of shear-wave splitting in rock specimens while they were in the critical state of rupture. The rock specimens for study are made of Laizhou marble from Shandong, ... This paper mainly observed and analyzed the character of shear-wave splitting in rock specimens while they were in the critical state of rupture. The rock specimens for study are made of Laizhou marble from Shandong, China. A series of records were obtained from two rock specimens when they were in the critical state of rupture. The result shows that, in the critical state just before rock rupture, there may be the phenomenon of rise and fall in the time delay of shear-wave splitting, even though the load was kept constant. That is to say, the time delay of shear-wave splitting may have a falling process before rock rupture. 展开更多
关键词 shear-wave splitTING CRITICAL state RUPTURE Time delay MARBLE
在线阅读 下载PDF
A seismological evidence for the northwestward movement of Africa with respect to Iberia from shear-wave splitting
14
作者 Mohamed K.Salah 《Geoscience Frontiers》 SCIE CAS 2012年第5期681-696,共16页
Seismic anisotropy and its main features along the convergent boundary between Africa and Iberia are detected through the analysis of teleseismic shear-wave splitting. Waveform data generated by 95 teleseismic events ... Seismic anisotropy and its main features along the convergent boundary between Africa and Iberia are detected through the analysis of teleseismic shear-wave splitting. Waveform data generated by 95 teleseismic events recorded at 17 broadband stations deployed in the western Mediterranean region are used in the present study. Although the station coverage is not uniform in the Iberian Peninsula and north- west Africa, significant variations in the fast polarization directions and delay times are observed at stations located at different tectonic domains. Fast polarization directions are oriented predominantly NW-SE at most stations which are close to the plate boundary and in central Iberia; being consistent with the absolute plate motion in the region. In the northern part of the Iberian Peninsula, fast velocity direc- tions are oriented nearly E--W; coincident with previous results. Few stations located slightly north of the plate boundary and to the southeast of lberia show E--W to NE-SW fast velocity directions, which may be related to the Alpine Orogeny and the extension direction in lberia. Delay times vary significantly between 0.2 and 1.9 s for individual measurements, reflecting a highly anisotropic structure beneath the recording stations. The relative motion between Africa and lberia represents the main reason for the observed NW-SE orientations of the fast velocity directions. However, different causes of anisotropy have also to be considered to explain the wide range of the splitting pattern observed in the western Mediterranean region. Many geophysical observations such as the low Pn velocity, lower lithospheric Q values, higher heat flow and the presence of high conductive features support the mantle flow in the western Mediterranean, which may contribute and even modify the splitting pattern beneath the studied region. 展开更多
关键词 shear-wave splitting Seismic anisotropy Iberian Peninsula Northwest Africa Western Mediterranean
在线阅读 下载PDF
Shear-wave Splitting of Aftershocks of the M_S 5.7 Jiujiang-Ruichang Earthquake
15
作者 Tang Lanrong Shi Yutao +3 位作者 Zeng Xinfu Zheng Bin Zhao Bo Lv Jian 《Earthquake Research in China》 2013年第1期67-76,共10页
Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area.... Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area. The result shows that the time delays of slow shear waves of the DJS station, which is not far from the epicenter and where the distribution of faults is complex near the station, are relatively larger and the polarization directions of fast shear waves are not concentrated; the predominant polarization direction of fast shear waves of WUJ station, with single fault distributed nearby, has a difference of 35° to the strike of the fault and is inconsistent with the direction of regional principal compressive stress. The predominant polarization direction of fast shear waves of SZD station with no faults nearby is in accordance with regional principal compressive stress. There is no obvious regular relationshipship between the delay time and the focal depth. 展开更多
关键词 Jiujiang-Ruichang earthquake shear wave splitting Regional principal compressive stress ANISOTROPY
在线阅读 下载PDF
Study on Correlation and Quantiative Error Estimation Method Among the Splitting Shear Wave Identification Methods
16
作者 Liu Xiqiang Zhou Huilan +1 位作者 Li Hong Gai Dianguang 《Earthquake Research in China》 2000年第3期53-62,共10页
Based on the propagation characteristics of shear wave in the anisotropic layers,thecorrelation among several splitting shear-wave identification methods hasbeen studied.Thispaper puts forward the method estimating sp... Based on the propagation characteristics of shear wave in the anisotropic layers,thecorrelation among several splitting shear-wave identification methods hasbeen studied.Thispaper puts forward the method estimating splitting shear-wave phases and its reliability byusing of the assumption that variance of noise and useful signal data obey normaldistribution.To check the validity of new method,the identification results and errorestimation corresponding to 95% confidence level by analyzing simulation signals have beengiven. 展开更多
关键词 ANISOTROPY shear-wave splitTING Identification methods CORRELATION ERROR estimation
在线阅读 下载PDF
Shear Wave Anisotropy of the Upper Mantle Beneath the Region from Tingri of Tibet to Golmud of Qinghai
17
作者 Shi Danian Dong Yingun +3 位作者 Jiang Mei Zhao Hong Georges Poupinet Alfred Hirn and Alexandre Nercessian Institute of Mineral Deposits, Chinese Academy of Geological Sciences, Beijing China Laboratoire de Geophysique Interne et Tectonophysique, Grenoble, France Laboratoire de Seismologie Experimentale, IPG, CNRS, Paris, France 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1997年第2期144-151,共8页
Measurements of shear wave splitting at 43 three-component seismic stationsshow very big difference in anisotropy on both sides of the Indus-Yarlung Zangbo suture(ITS), but little difference on both sides of the older... Measurements of shear wave splitting at 43 three-component seismic stationsshow very big difference in anisotropy on both sides of the Indus-Yarlung Zangbo suture(ITS), but little difference on both sides of the older Bangong-Nujiang suture (BNS) and theJinsha River suture (JS) to its north. Obvious discrepancy exists between the anisotropy direc-tion and the superficial tectonic trends, which is not explicable directly by the coherent uppermantle deformation usually supposed to occur in consistency with the trend of a collisional belt.On the other hand, strong spatial relationships are observed from the anisotropy results, such asthe orthogonal directions of anisotropy on both sides of ITS and the good correlation betweenthe region of larger magnitude of anisotropy and the zone of inefficient Sn propagation ofQiangtang as well as the systematic rotation of the directions of anisotropy, which should testifysome much more complicated aspects of the continental convergence mechanism. To the best ofour data, we tend to suppose that the Qinghai-Tibet plateau might result from a mechanismcomplicated by the coexistence of Argand's underthrusting and Dewey's diffuse deformation. 展开更多
关键词 Qinghai-Tibet plateau continental evolution SEISMOLOGY shear wave splitting ANISOTROPY
在线阅读 下载PDF
Shear wave anisotropy in D” region beneath the western Pacific
18
作者 戴志阳 刘斌 +3 位作者 王霄翔 查显杰 张虎 杨凤琴 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第5期489-496,共8页
Using seismic shear phases from 47 Tonga-Fiji and its adjacent region events recorded by the CENC and IRIS, and from 26 northeast Asia and north Pacific events recorded by IRIS, we studied the shear wave anisotropy i... Using seismic shear phases from 47 Tonga-Fiji and its adjacent region events recorded by the CENC and IRIS, and from 26 northeast Asia and north Pacific events recorded by IRIS, we studied the shear wave anisotropy in D" region beneath the western Pacific utilizing the ScS-S differential travel time method and obtained the splitting time values between the radial and transverse components of each ScS wave corresponding to each core-mantle boundary (CMB) reflection point. We found that most shear waves involved horizontally polarized shear wave components traveling faster than vertically polarized shear wave components through the D" region. The splitting time values of ScS wave range from -0.91 s to 3.21 s with an average value of 1.1 s. The strength of anisotropy varies from -0.45% to 1.56% with an average value of 0.52%. The observations and analyses show that in the D" region beneath the western Pacific the lateral flow is expected to be dominant and the vertical transverse isotropy may be the main anisotropic structure. This structure feature may be explained by the shape preferred orientation of the CMB chemical reaction products or partial melt and the lattice preferred orientation of the lower mantle materials caused by the lateral flow at lowermost mantle. 展开更多
关键词 ANISOTROPY shear wave splitting D" region ScS phase the western Pacific
在线阅读 下载PDF
青藏高原东北缘构造特征与分层各向异性 被引量:1
19
作者 夏新宇 高原 《地震学报》 北大核心 2025年第1期1-20,共20页
本文综合前人在青藏高原东北缘利用不同方法不同资料得到的地震各向异性结果,对该地区断裂和应力等构造特征及分层各向异性进行了分析。结果表明,青藏高原东北缘以地壳缩短增厚变形为主,部分区域存在各向异性分层或壳内韧性层。XKS(SKS,... 本文综合前人在青藏高原东北缘利用不同方法不同资料得到的地震各向异性结果,对该地区断裂和应力等构造特征及分层各向异性进行了分析。结果表明,青藏高原东北缘以地壳缩短增厚变形为主,部分区域存在各向异性分层或壳内韧性层。XKS(SKS,PKS和SKKS震相的统称)分裂的快波方向整体呈NW或WNW向,与上地幔物质的流动有关。地壳的快波方向表明地壳变形会受到断裂及主压应力的影响。祁连造山带和海原断裂带的分层各向异性特征揭示了上地壳与中下地壳可能存在解耦。阿拉善地块东部至鄂尔多斯地块西部可能存在壳幔解耦现象,上下两层的变形机制不同。秦岭造山带表现为较强的壳幔耦合。松潘—甘孜地块的分层特征及其变形机制较为复杂,仍然存在争议。 展开更多
关键词 青藏高原东北缘 各向异性分层 XKS震相 接收函数 剪切波分裂 壳幔变形特征
在线阅读 下载PDF
OBN转换横波分裂分析刻画东海西湖凹陷裂缝分布
20
作者 李亚清 刘苗 +4 位作者 赵秀莲 陈茂根 朱宝衡 陈琳枝 李振伟 《热带海洋学报》 北大核心 2025年第1期189-199,共11页
裂缝方位和发育强度是各向异性研究的重要参数,通过常规纵波地震数据难以辨识。相比之下,裂缝引起的横波分裂现象更加明显。为研究中国东海西湖凹陷探区裂缝发育情况,本文利用四分量海底节点(oceanbottom nodes,OBN)地震数据中记录的转... 裂缝方位和发育强度是各向异性研究的重要参数,通过常规纵波地震数据难以辨识。相比之下,裂缝引起的横波分裂现象更加明显。为研究中国东海西湖凹陷探区裂缝发育情况,本文利用四分量海底节点(oceanbottom nodes,OBN)地震数据中记录的转换横波信息进行了横波分裂分析。研究发现:浅层(0~3000ms)快慢横波时间延迟3~5ms,平均裂缝方向约111°—117°,裂缝方位相似度高达80%~90%,裂缝发育比较集中;深层(大于3000ms)裂缝分布较复杂,快慢横波时间延迟主要集中于6~8ms,主要方位集中于119°,但裂缝方位相似度低(低于50%),方位不集中,出现约20°—40°方位的裂缝。研究区浅层主要发育NW(西北)向裂缝,深层主要发育NW(西北)和NE(东北)向裂缝,与研究区断层发育方向基本一致;横波分裂时间延迟量从浅部到深部逐渐增大,表明越往深层,裂缝发育强度越强;研究区南侧时间延迟明显高于北侧,表明南侧裂缝发育强度高于北侧。 展开更多
关键词 东海 横波分裂 OBN转换横波 各向异性 裂缝特征
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部