期刊文献+
共找到114,752篇文章
< 1 2 250 >
每页显示 20 50 100
Global adaptive output feedback control of nonlinear time-delay systems with measurement uncertainty
1
作者 Weiguo Cai Xianglei Jia Xinxu Ju 《Control Theory and Technology》 2025年第1期145-152,共8页
In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that globa... In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method. 展开更多
关键词 Output feedback Measurement uncertainty Nonlinear adaptive control Time delays
原文传递
基于Adaptive LASSO模型辅助校准的非概率样本与概率样本融合研究
2
作者 王小宁 孙敏 邹梦文 《调研世界》 2025年第9期84-96,共13页
在过往的调查研究中,大部分统计研究者所使用的都是概率样本进行估计,但随着数据技术的发展与概率抽样成本的增加,非概率抽样的时效性与便捷性使其使用率日益上升。基于这一研究背景,考虑辅助变量高维的情况下,将Adaptive LASSO引入模... 在过往的调查研究中,大部分统计研究者所使用的都是概率样本进行估计,但随着数据技术的发展与概率抽样成本的增加,非概率抽样的时效性与便捷性使其使用率日益上升。基于这一研究背景,考虑辅助变量高维的情况下,将Adaptive LASSO引入模型辅助校准估计法,筛选出相关性强的辅助变量对非概率样本的权数进行校准,解决由于非概率样本入样概率未知而导致难以进行统计推断的问题,实现非概率样本与概率样本融合来估计总体。通过模拟分析以及利用网民社会意识调查和中国社会状况综合调查两个数据集进行的实证分析,验证了本文提出的基于Adaptive LASSO进行模型辅助校准的数据融合方法可有效提高估计的精度。 展开更多
关键词 数据融合 模型辅助校准 adaptive LASSO
在线阅读 下载PDF
Adaptive optoelectronic transistor for intelligent vision system 被引量:1
3
作者 Yiru Wang Shanshuo Liu +5 位作者 Hongxin Zhang Yuchen Cao Zitong Mu Mingdong Yi Linghai Xie Haifeng Ling 《Journal of Semiconductors》 2025年第2期53-70,共18页
Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances a... Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems. 展开更多
关键词 adaptive optoelectronic transistor neuromorphic computing artificial vision
在线阅读 下载PDF
Improved Event-Triggered Adaptive Neural Network Control for Multi-agent Systems Under Denial-of-Service Attacks 被引量:1
4
作者 Huiyan ZHANG Yu HUANG +1 位作者 Ning ZHAO Peng SHI 《Artificial Intelligence Science and Engineering》 2025年第2期122-133,共12页
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method... This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system. 展开更多
关键词 multi-agent systems neural network DoS attacks memory-based adaptive event-triggered mechanism
在线阅读 下载PDF
Single-nucleotide polymorphisms and copy number variations drive adaptive evolution to freezing stress in a subtropical evergreen broadleaved tree:Hexaploid wild Camellia oleifera 被引量:1
5
作者 Haoxing Xie Kaifeng Xing +3 位作者 Jun Zhou Yao Zhao Jian Zhang Jun Rong 《Plant Diversity》 2025年第2期214-228,共15页
Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wil... Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress. 展开更多
关键词 adaptive evolution Camellia oleifera Copy number variations Freezing stress POLYPLOID Single-nucleotide polymorphisms
在线阅读 下载PDF
Neurogenesis dynamics in the olfactory bulb:deciphering circuitry organization, function, and adaptive plasticity
6
作者 Moawiah M.Naffaa 《Neural Regeneration Research》 SCIE CAS 2025年第6期1565-1581,共17页
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh... Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior. 展开更多
关键词 network adaptability NEUROGENESIS neuronal communication olfactory bulb olfactory learning olfactory memory synaptic plasticity
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
7
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
STAP with adaptive calibration of array mutual coupling and gain/phase errors
8
作者 Quanyang BI Dan LI Jianqiu ZHANG 《Chinese Journal of Aeronautics》 2025年第7期545-556,共12页
To address the significant degradation of Space-Time Adaptive Processing(STAP)performance when the array elements have mutual coupling and gain/phase errors,a STAP algorithm with adaptive calibration for the above two... To address the significant degradation of Space-Time Adaptive Processing(STAP)performance when the array elements have mutual coupling and gain/phase errors,a STAP algorithm with adaptive calibration for the above two array errors is proposed in this article.First,based on a defined error matrix that simultaneously considers both array mutual coupling and gain/phase errors,a STAP signal model including these errors is given.Then,utilizing the defined signal model,it is demonstrated that the estimation of the defined error matrix can be formulized as a standard convex optimization problem with the low-rank structure of the clutter covariance matrix and the subspace projection theory.Once the defined error matrix is estimated by solving the convex optimization problem,it is illustrated that a STAP method with adaptive calibration of the mutual coupling and gain/phase errors is coined.Analyses also show that the proposed adaptive calibration algorithm only needs one training sample to construct the adaptive weight vector.Therefore,it can achieve a good detection performance even with severe non-homogeneous clutter environments.Finally,the simulation experiments verify the effectiveness of the proposed algorithm and the correctness of the analytical results. 展开更多
关键词 Gain/phase error Mutual coupling Subspace projection Space-time adaptive processing adaptive calibration
原文传递
OMD-RAS:Optimizing Malware Detection through Comprehensive Approach to Real-Time and Adaptive Security
9
作者 Farah Mohammad Saad Al-Ahmadi Jalal Al-Muhtadi 《Computers, Materials & Continua》 2025年第9期5995-6014,共20页
Malware continues to pose a significant threat to cybersecurity,with new advanced infections that go beyond traditional detection.Limitations in existing systems include high false-positive rates,slow system response ... Malware continues to pose a significant threat to cybersecurity,with new advanced infections that go beyond traditional detection.Limitations in existing systems include high false-positive rates,slow system response times,and inability to respond quickly to new malware forms.To overcome these challenges,this paper proposes OMD-RAS:Implementing Malware Detection in an Optimized Way through Real-Time and Adaptive Security as an extensive approach,hoping to get good results towards better malware threat detection and remediation.The significant steps in the model are data collection followed by comprehensive preprocessing consisting of feature engineering and normalization.Static analysis,along with dynamic analysis,is done to capture the whole spectrum of malware behavior for the feature extraction process.The extracted processed features are given with a continuous learning mechanism to the Extreme Learning Machine model of real-time detection.This OMD-RAS trains quickly and has great accuracy,providing elite,advanced real-time detection capabilities.This approach uses continuous learning to adapt to new threats—ensuring the effectiveness of detection even as strategies used by malware may change over time.The experimental results showed that OMD-RAS performs better than the traditional approaches.For instance,the OMD-RAS model has been able to achieve an accuracy of 96.23%and massively reduce the rate of false positives across all datasets while eliciting a consistently high rate of precision and recall.The model’s adaptive learning reflected enhancements on other performance measures-for example,Matthews Correlation Coefficients and Log Loss. 展开更多
关键词 MALWARE adaptive security feature engineering ELM Kafka
暂未订购
Conformationally adaptive metal-organic cages for dynamic vip encapsulation
10
作者 Yujuan Zhou Kecheng Jie 《Chinese Chemical Letters》 2025年第6期4-5,共2页
Dynamic adaptability is a key feature in biological macromolecules,enabling selective binding and catalysis[1].From DNA supercoiling to enzyme conformational changes,biological systems have evolved intricate ways to d... Dynamic adaptability is a key feature in biological macromolecules,enabling selective binding and catalysis[1].From DNA supercoiling to enzyme conformational changes,biological systems have evolved intricate ways to dynamically adjust their structures to accommodate functional needs.Mimicking this adaptability in synthetic systems is an ongoing challenge in supramolecular chemistry. 展开更多
关键词 enzyme conformational changesbiological conformationally adaptive metal organic cages selective binding dna supercoiling dynamic adaptability biological macromoleculesenabling supramolecular chemistry dynamically adjust their structures
原文传递
An adaptive representational account of predictive processing in human cognition
11
作者 Zhichao Gong Yidong Wei 《Cultures of Science》 2025年第1期3-11,共9页
As a new research direction in contemporary cognitive science,predictive processing surpasses traditional computational representation and embodied cognition and has emerged as a new paradigm in cognitive science rese... As a new research direction in contemporary cognitive science,predictive processing surpasses traditional computational representation and embodied cognition and has emerged as a new paradigm in cognitive science research.The predictive processing theory advocates that the brain is a hierarchical predictive model based on Bayesian inference,and its purpose is to minimize the difference between the predicted world and the actual world,so as to minimize the prediction error.Predictive processing is therefore essentially a context-dependent model representation,an adaptive representational system designed to achieve its cognitive goals through the minimization of prediction error. 展开更多
关键词 Predictive processing Bayesian inference adaptive representation
在线阅读 下载PDF
BIG-ABAC:Leveraging Big Data for Adaptive,Scalable,and Context-Aware Access Control
12
作者 Sondes Baccouri Takoua Abdellatif 《Computer Modeling in Engineering & Sciences》 2025年第4期1071-1093,共23页
Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a trans... Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a transformative approach to Attribute-Based Access Control(ABAC)by integrating real-time policy evaluation and contextual adaptation.Unlike traditional ABAC systems that rely on static policies,BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes,ensuring precise and efficient access control.Leveraging decision trees evaluated in real-time,BIG-ABAC overcomes the limitations of conventional access control models,enabling seamless adaptation to complex,high-demand scenarios.The framework adheres to the NIST ABAC standard while incorporating modern distributed streaming technologies to enhance scalability and traceability.Its flexible policy enforcement mechanisms facilitate the implementation of regulatory requirements such as HIPAA and GDPR,allowing organizations to align access control policies with compliance needs dynamically.Performance evaluations demonstrate that BIG-ABAC processes 95% of access requests within 50 ms and updates policies dynamically with a latency of 30 ms,significantly outperforming traditional ABAC models.These results establish BIG-ABAC as a benchmark for adaptive,scalable,and context-aware access control,making it an ideal solution for dynamic,high-risk domains such as healthcare,smart cities,and Industrial IoT(IIoT). 展开更多
关键词 ABAC big data CONTEXT-AWARE decision trees adaptive policy SCALABILITY
在线阅读 下载PDF
Research on indoor visual localization based on semantic segmentation and adaptive weighting
13
作者 TAO Sili QIN Danyang +1 位作者 YANG Jiaqiang BIE Haoze 《High Technology Letters》 2025年第3期300-308,共9页
Indoor visual localization relies heavily on image retrieval to ascertain location information.However,the widespread presence and high consistency of floor patterns across different images of-ten lead to the extracti... Indoor visual localization relies heavily on image retrieval to ascertain location information.However,the widespread presence and high consistency of floor patterns across different images of-ten lead to the extraction of numerous repetitive features,thereby reducing the accuracy of image retrieval.This article proposes an indoor visual localization method based on semantic segmentation and adaptive weight fusion to address the issue of ground texture interference with retrieval results.During the positioning process,an indoor semantic segmentation model is established.Semantic segmentation technology is applied to accurately delineate the ground portion of the images.Fea-ture extraction is performed on both the original database and the ground-segmented database.The vector of locally aggregated descriptors(VLAD)algorithm is then used to convert image features into a fixed-length feature representation,which improves the efficiency of image retrieval.Simul-taneously,a method for adaptive weight optimization in similarity calculation is proposed,using a-daptive weights to compute similarity for different regional features,thereby improving the accuracy of image retrieval.The experimental results indicate that this method significantly reduces ground interference and effectively utilizes ground information,thereby improving the accuracy of image retrieval. 展开更多
关键词 indoor localization image retrieval semantic segmentation adaptive weight
在线阅读 下载PDF
Adaptive regulation effectively mitigates the spread of rumors
14
作者 Fu-Zhong Nian Zhen Wang Yi Jia 《Chinese Physics B》 2025年第6期624-633,共10页
Regulation plays a pivotal role in mitigating the spread of rumors, serving as a vital tool for maintaining social stability and facilitating its evolution. A central challenge lies in establishing an effective regula... Regulation plays a pivotal role in mitigating the spread of rumors, serving as a vital tool for maintaining social stability and facilitating its evolution. A central challenge lies in establishing an effective regulatory framework despite limited resources available for combating rumor propagation. To address this challenge, this paper proposes a dynamic and adaptive regulatory system. First, based on observed regulatory patterns in real-world social networks, the rumor propagation process is divided into two distinct phases: regulation and intervention. Regulatory intensity is introduced as an indicator of user state transitions. Unlike traditional, non-adaptive regulatory models that allocate costs uniformly,the adaptive model facilitates flexible cost distribution through a manageable individual regulatory intensity. Moreover,by introducing adaptive strength, the two cost allocation models are integrated within a unified framework, leading to the development of a dynamic model for rumor suppression. Finally, simulation experiments on Barabási–Albert(BA)networks demonstrate that the adaptive regulatory mechanism significantly reduces both the scope and duration of rumor propagation. Furthermore, when traditional non-adaptive regulatory models show limited effectiveness, the adaptive model effectively curbs rumor propagation by optimizing cost allocation between regulatory and intervention processes, and by adjusting per-unit cost benefit differentials. 展开更多
关键词 rumor suppression adaptive regulation social network propagation dynamics
原文传递
An adaptive continuous threshold wavelet denoising method for LiDAR echo signal
15
作者 Dezhi Zheng Tianchi Qu +4 位作者 Chun Hu Shijia Lu Zhongxiang Li Guanyu Yang Xiaojun Yang 《Nanotechnology and Precision Engineering》 2025年第2期51-62,共12页
Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection... Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals. 展开更多
关键词 Single-photon LiDAR Echo signal adaptive thresholding Wavelet transform
暂未订购
Scheduling Optimization and Adaptive Decision-Making Method for Self-organizing Manufacturing Systems Considering Dynamic Disturbances
16
作者 ZHANG Yi QIAO Senyu +2 位作者 YIN Leilei SUN Quan XIE Fupeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期297-309,共13页
The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are ... The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are difficult to achieve efficient and real-time production management under dynamic disturbance.In order to improve the intelligence and adaptability of production scheduler,a novel distributed scheduling architecture is proposed,which has the ability to autonomously allocate tasks and handle disturbances.All production tasks are scheduled through autonomous collaboration and decision-making between intelligent machines.Firstly,the multi-agent technology is applied to build a self-organizing manufacturing system,enabling each machine to be equipped with the ability of active information interaction and joint-action execution.Secondly,various self-organizing collaboration strategies are designed to effectively facilitate cooperation and competition among multiple agents,thereby flexibly achieving global perception of environmental state.To ensure the adaptability and superiority of production decisions in dynamic environment,deep reinforcement learning is applied to build a smart production scheduler:Based on the perceived environment state,the scheduler intelligently generates the optimal production strategy to guide the task allocation and resource configuration.The feasibility and effectiveness of the proposed method are verified through three experimental scenarios using a discrete manufacturing workshop as the test bed.Compared to heuristic dispatching rules,the proposed method achieves an average performance improvement of 34.0%in three scenarios in terms of order tardiness.The proposed system can provide a new reference for the design of smart manufacturing systems. 展开更多
关键词 intlligent manufacturing adaptive scheduling self-organizing manufacturing system reinforcement learning
在线阅读 下载PDF
Non-contact radar-based HRV monitoring method using adaptive cycle segmentation and peak extraction
17
作者 GAO Yixuan ZHU Xinxing +5 位作者 LI Mingchao WU Enkang GU Xiaofeng WANG Cong YU Tian LIANG Junge 《Journal of Measurement Science and Instrumentation》 2025年第2期161-172,共12页
Heart rate variability(HRV),as a key indicator for evaluating autonomic nervous system function,has significant value in areas such as cardiovascular disease screening and emotion monitoring.Although traditional conta... Heart rate variability(HRV),as a key indicator for evaluating autonomic nervous system function,has significant value in areas such as cardiovascular disease screening and emotion monitoring.Although traditional contact-based measurement methods offer high precision,they suffer from issues such as poor comfort and low user compliance.This paper proposes a non-contact HRV monitoring method using frequency modulated continuous wave(FMCW)radar,highlighting adaptive cycle segmentation and peak extraction as core innovations.Key advantages of this method include:1)effective suppression of motion artifacts and respiratory harmonics by leveraging cardiac energy concentration;2)precise heartbeat cycle identification across physiological states via adaptive segmentation,addressing time-varying differences;3)adaptive threshold adjustment using discrete energy signals and a support vector machine(SVM)model based on morphological-temporal-spectral characteristics,reducing complexity while maintaining precision.Previous approaches predominantly process radar signals holistically through algorithms to uniformly extract inter-beat intervals(IBIs),which may result in high computational complexity and inadequate dynamic adaptability.In contrast,our method achieved higher precision than conventional holistic processing approaches,while maintaining comparable precision with lower computational complexity than previous optimization algorithms.Experimental results demonstrate that the system achieves an average IBI error of 8.28 ms(RMSE of 15.3 ms),which is reduced by about 66%compared with the traditional holistically peak seeking method.The average errors of SDNN and RMSSD are 2.65 ms and 4.33 ms,respectively.More than 92%of the IBI errors are controlled within 20 ms.The distance adaptability test showed that although the accuracy of long-distance measurement decreased slightly(<6 ms),the overall detection performance remained robust at different distances.This study provided a novel estimation algorithm for non-contact HRV detection,offering new perspectives for future health monitoring. 展开更多
关键词 HRV FMCW radar cycle segmentation adaptive threshold non-contact monitoring
暂未订购
Leci:Learnable Evolutionary Category Intermediates for Unsupervised Domain Adaptive Segmentation
18
作者 Qiming ZHANG Yufei XU +1 位作者 Jing ZHANG Dacheng TAO 《Artificial Intelligence Science and Engineering》 2025年第1期37-51,共15页
To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,s... To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,such as virtual world(e.g.,3D games),and adapt models to the target domain(the real world)by narrowing the domain discrepancies.However,because of the large domain gap,directly aligning two distinct domains without considering the intermediates leads to inefficient alignment and inferior adaptation.To address this issue,we propose a novel learnable evolutionary Category Intermediates(CIs)guided UDA model named Leci,which enables the information transfer between the two domains via two processes,i.e.,Distilling and Blending.Starting from a random initialization,the CIs learn shared category-wise semantics automatically from two domains in the Distilling process.Then,the learned semantics in the CIs are sent back to blend the domain features through a residual attentive fusion(RAF)module,such that the categorywise features of both domains shift towards each other.As the CIs progressively and consistently learn from the varying feature distributions during training,they are evolutionary to guide the model to achieve category-wise feature alignment.Experiments on both GTA5 and SYNTHIA datasets demonstrate Leci's superiority over prior representative methods. 展开更多
关键词 unsupervised domain adaptation semantic segmentation deep learning
在线阅读 下载PDF
Gain adaptive tuning method for fiber Raman amplifier based on two-stage neural networks and double weights updates
19
作者 MU Kuanlin WU Yue 《Optoelectronics Letters》 2025年第5期284-289,共6页
We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training ph... We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy. 展开更多
关键词 gain adaptive tuning connection weights error predicted target gains training connection weights unified nn gain adaptive tuning method double weights updates fiber raman amplifier fra
原文传递
Physically Constrained Adaptive Deep Learning for Ocean Vertical-Mixing Parameterization
20
作者 Junjie FANG Xiaojie LI +4 位作者 Jin LI Zhanao HUANG Yongqiang YU Xiaomeng HUANG Xi WU 《Advances in Atmospheric Sciences》 2025年第1期165-177,共13页
Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast res... Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast results.The uncertainty in ocean-mixing parameterization is primarily responsible for the bias in ocean models.Benefiting from deep-learning technology,we design the Adaptive Fully Connected Module with an Inception module as the baseline to minimize bias.It adaptively extracts the best features through fully connected layers with different widths,and better learns the nonlinear relationship between input variables and parameterization fields.Moreover,to obtain more accurate results,we impose KPP(K-Profile Parameterization)and PP(Pacanowski–Philander)schemes as physical constraints to make the network parameterization process follow the basic physical laws more closely.Since model data are calculated with human experience,lacking some unknown physical processes,which may differ from the actual data,we use a decade-long time record of hydrological and turbulence observations in the tropical Pacific Ocean as training data.Combining physical constraints and a nonlinear activation function,our method catches its nonlinear change and better adapts to the oceanmixing parameterization process.The use of physical constraints can improve the final results. 展开更多
关键词 deep learning vertical-mixing parameterization ocean sciences adaptive network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部