期刊文献+
共找到43,339篇文章
< 1 2 250 >
每页显示 20 50 100
Optimal Time-Frequency Atom Search Based on Adaptive Genetic Algorithm 被引量:1
1
作者 郭俊锋 李言俊 张科 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第1期30-35,共6页
Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal pro... Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal processing.A main challenge of the Gaussian chirplet decomposition is the numerical implementation of the matching pursuit,which is an adaptive signal decomposition scheme,and the challenge remains an open research topic.In this paper,a new optimal time-frequency atom search method based on the adaptive genetic algorithm is proposed,aiming to the low precision problem of the traditional methods.Firstly,a discrete formula of finite length time-frequency atom sequence is derived.Secondly,an algorithm based on the adaptive genetic algorithm is described in detail.Finally,a simulation is carried out,and the result displays its validity and stability. 展开更多
关键词 信息处理 有限长度频率 遗传算法 适合性
在线阅读 下载PDF
Parametric adaptive time-frequency representation based on time-sheared Gabor atoms 被引量:2
2
作者 Ma Shiwei Zhu Xiaojin Chen Guanghua Wang Jian Cao Jialin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期1-7,共7页
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ... A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing. 展开更多
关键词 time-frequency analysis Gabor atom Time-shear Adaptive signal decomposition time-frequency distribution.
在线阅读 下载PDF
Abnormal Signal Recognition with Time-Frequency Spectrogram:A Deep Learning Approach
3
作者 Kuang Tingyan Chen Huichao +3 位作者 Han Lu He Rong Wang Wei Ding Guoru 《China Communications》 2025年第11期305-319,共15页
With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communicat... With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communication system.In particular,the abnormal signals may emulate the normal signals,which makes it very challenging for abnormal signal recognition.In this paper,we propose a new abnormal signal recognition scheme,which combines time-frequency analysis with deep learning to effectively identify synthetic abnormal communication signals.Firstly,we emulate synthetic abnormal communication signals including seven jamming patterns.Then,we model an abnormal communication signals recognition system based on the communication protocol between the transmitter and the receiver.To improve the performance,we convert the original signal into the time-frequency spectrogram to develop an image classification algorithm.Simulation results demonstrate that the proposed method can effectively recognize the abnormal signals under various parameter configurations,even under low signal-to-noise ratio(SNR)and low jamming-to-signal ratio(JSR)conditions. 展开更多
关键词 abnormal signal recognition deep learning time-frequency analysis
在线阅读 下载PDF
Convolutional sparse coding network for sparse seismic time-frequency representation
4
作者 Qiansheng Wei Zishuai Li +3 位作者 Haonan Feng Yueying Jiang Yang Yang Zhiguo Wang 《Artificial Intelligence in Geosciences》 2025年第1期299-304,共6页
Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-f... Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-forms,which leverage sparse coding(SC),have gained significant attention in the geosciences due to their ability to achieve high TF resolution.However,the iterative approaches typically employed in sparse TF transforms are computationally intensive,making them impractical for real seismic data analysis.To address this issue,we propose an interpretable convolutional sparse coding(CSC)network to achieve high TF resolution.The proposed model is generated based on the traditional short-time Fourier transform(STFT)transform and a modified UNet,named ULISTANet.In this design,we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm(LISTA)blocks,a specialized form of CSC.The LISTA block,which evolves from the traditional iterative shrinkage thresholding algorithm(ISTA),is optimized for extracting sparse features more effectively.Furthermore,we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet.Finally,the proposed method’s performance is subsequently validated using both synthetic and field data,demonstrating its potential for enhanced seismic data analysis. 展开更多
关键词 time-frequency transform Iteration shrinkage threshold algorithm Deep learning UNet
在线阅读 下载PDF
Atomic density disturbance rejection in atomic gyroscopes via faraday polarimetric decoupling
5
作者 Zehua Liu Yifan Yan +5 位作者 Haoying Pang Xinhui Liu Jixi Lu Xusheng Lei Zhuo Wang Wei Quan 《Defence Technology(防务技术)》 2026年第1期1-10,共10页
Atomic spin gyroscopes are promising candidates for next-generation inertial navigation due to extremely high theoretical precision,relatively small size among atomic gyroscopes,and promising potential for miniaturiza... Atomic spin gyroscopes are promising candidates for next-generation inertial navigation due to extremely high theoretical precision,relatively small size among atomic gyroscopes,and promising potential for miniaturization.In particular,the spin-exchange relaxation-free(SERF)atomic gyroscope relies on optical pumping to polarize atoms,enabling rotation sensing through the Faraday optical rotation angle(FORA).However,fluctuations in atomic density introduce systematic errors in FORA measurements,limiting long-term stability.We present a data-driven decoupling method that isolates atomic density fluctuations from the FORA signal by modeling spatially resolved light absorption in the vapor cell.The model accounts for the spatial distribution of spin polarization in the pump-light interaction volume,density-dependent relaxation rates,wall-induced relaxation,and polarization diffusion,and is implemented within a finite-element framework.Compared to the conventional Lambert-Beer law,which assumes one-dimensional homogeneity,our approach captures the full threedimensional density and polarization distribution,significantly improving the accuracy of light absorption modeling.The resulting absorption-density maps are used to train a feedforward neural network,yielding a high-precision estimator for atomic density fluctuations.This estimator enables the construction of a decoupling equation that separates the density contribution from the FORA signal.Experimental validation shows that this method improves the bias instability atσ(100 s)of the gyroscope was improved by 73.1%compared to traditional platinum-resistance-based stabilization.The proposed framework is general and can be extended to other optical pumping-based sensors,such as optically pumped magnetometers. 展开更多
关键词 atomic gyroscope SERF gyroscope atomic density Optically pumped sensors
在线阅读 下载PDF
Parameter Estimation of Multiple Frequency-Hopping Signals Based on Space-Time-Frequency Analysis by Atomic Norm Soft Thresholding with Missing Observations
6
作者 Hongbin Wang Bangning Zhang +2 位作者 Heng Wang Binbin Wu Daoxing Guo 《China Communications》 SCIE CSCD 2022年第7期135-151,共17页
In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a u... In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a uniform linear array(ULA).We exploit the inherent incomplete data processing capability of atomic norm soft thresholding(AST)to analyze the space-time matrix and complete the accurate estimation of the hopping time and frequency of the received FH signals.The hopping time is obtained by the sudden changes of the spatial information,which is implemented as the boundary to divide the time domain signal so that each segment of the signal is a superposition of time-invariant multiple components.Then,the frequency of multiple signal components can be estimated precisely by AST within each segment.After obtaining the above two parameters of the hopping time and the frequency of signals,the direction of arrival(DOA)can be directly calculated by them,and the network sorting can be realized.Results of simulation show that the proposed method is superior to the existing technology.Even when a large portion of data observations is missing,as the number of array elements increases,the proposed method still achieves acceptable accuracy of multi-FH signal parameters estimation. 展开更多
关键词 frequency hopping parameter estimation missing observations atomic norm soft thresholding uniform linear array
在线阅读 下载PDF
Single Fe atom anchored by N vacancy of C_(3)N_(4) activates PMS for efficient degradation of refractory organics:The key role of non-radical pathway through 1O_(2) and Fe(IV)=O
7
作者 Shenghui Tu Lu Sun +5 位作者 Hongxiang Zhang Jiaqi Xie Leizhen Shen Wenming Liu Guobo Li Honggen Peng 《Journal of Environmental Sciences》 2026年第1期339-348,共10页
Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibite... Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts. 展开更多
关键词 Refractory organics PMS activation Single atom Singlet oxygen High-valent iron Carbon nitride
原文传递
Fe single-atom-modified g-C_(3)N_(4)via a facile oxygen-tolerant synthesis strategy for improved photocatalytic H_(2)production
8
作者 Wentao Xu Yuting Tang +3 位作者 Tao Ding Qichen Liu Xusheng Zheng Qing Yang 《Nano Research》 2026年第1期418-428,共11页
Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the c... Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the complex synthesis procedures,limited active sites,and insufficient mechanistic understanding.Herein,a facile oxygen-tolerant synthesis strategy was developed,which utilizes the nitrogen-rich structure of g-C_(3)N_(4)to capture Fe single atoms from ammonium iron citrate,successfully constructing an efficient photocatalytic composite.The resulting Fe single-atom-modified g-C_(3)N_(4)catalyst exhibited highly improved light absorption,charge carrier separation,and a substantially enhanced rate of H_(2)production photocatalytically under visible light irradiation.Experimental results demonstrated that the optimal sample achieves a H_(2)production rate of 683μmol·h-1·g^(-1),representing a 425% enhancement compared to pristine g-C_(3)N_(4).This study presents a facile oxygen-tolerant approach for metal immobilization using metal-organic precursors,where the nitrogen-rich framework of g-C_(3)N_(4)effectively captures Fe atoms as singular site within the composite.The developed synthesis strategy provides new insights for designing high-performance single-atom photocatalytic materials,potentially advancing the application and development of photocatalysis. 展开更多
关键词 graphitic carbon nitride(g-C_(3)N_(4)) Fe single atoms ammonium iron citrate oxygen-tolerant photocatalytic hydrogen production
原文传递
Application of sparse time-frequency decomposition to seismic data 被引量:3
9
作者 王雄文 王华忠 《Applied Geophysics》 SCIE CSCD 2014年第4期447-458,510,共13页
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time... The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results. 展开更多
关键词 time-frequency analysis sparse time-frequency decomposition nonstationary signal RESOLUTION
在线阅读 下载PDF
TVAR Time-frequency Analysis for Non-stationary Vibration Signals of Spacecraft 被引量:7
10
作者 杨海 程伟 朱虹 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期423-432,共10页
Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional... Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution. 展开更多
关键词 non-stationary random vibration time-frequency distribution process neural network empirical mode decomposition
在线阅读 下载PDF
Intelligibility evaluation of enhanced whisper in joint time-frequency domain 被引量:1
11
作者 周健 魏昕 +1 位作者 梁瑞宇 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期261-266,共6页
Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyze... Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context. 展开更多
关键词 whispered speech enhancement intelligibilityevaluation real-valued discrete Gabor transform joint time-frequency analysis
在线阅读 下载PDF
Effects of Gabor transform parameters on signa time-frequency resolution
12
作者 尹陈 贺振华 黄德济 《Applied Geophysics》 SCIE CSCD 2006年第3期169-173,共5页
In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effect... In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given. 展开更多
关键词 Gabor transform time-frequency analysis RESOLUTION Gaussion window sampling interval.
在线阅读 下载PDF
Time-Frequency Signal Processing for Gas-Liquid Two Phase Flow Through a Horizontal Venturi Based on Adaptive Optimal-Kernel Theory 被引量:10
13
作者 孙斌 王二朋 +2 位作者 丁洋 白宏震 黄咏梅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期243-252,共10页
A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal o... A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal of gas-liquid two-phase flow was preprocessed,and then the AOK theory was used to analyze the dynamic differ-ential pressure signal.The mechanism of two-phase flow was discussed through the time-frequency spectrum.On the condition of steady water flow rate,with the increasing of gas flow rate,the flow pattern changes from bubbly flow to slug flow,then to plug flow,meanwhile,the energy distribution of signal fluctuations show significant change that energy transfer from 15-35 Hz band to 0-8 Hz band;moreover,when the flow pattern is slug flow,there are two wave peaks showed in the time-frequency spectrum.Finally,a number of characteristic variables were defined by using the time-frequency spectrum and the ridge of AOK.When the characteristic variables were visu-ally analyzed,the relationship between different combination of characteristic variables and flow patterns would be gotten.The results show that,this method can explain the law of flow in different flow patterns.And characteristic variables,defined by this method,can get a clear description of the flow information.This method provides a new way for the flow pattern identification,and the percentage of correct prediction is up to 91.11%. 展开更多
关键词 adaptive optimal-kernel two-phase flow time-frequency spectrum time-frequency ridge flow pattern identification
在线阅读 下载PDF
Time-Frequency Characteristics of the Relationships Between Tropical Indo-Pacific SSTs 被引量:9
14
作者 Song YANG 丁晓利 +1 位作者 郑大伟 Soo-Hyun YOO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期343-359,共17页
In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By a... In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By analyzing a long data record, the authors focus on the time-frequency characteristics of these relationships, and of the structure of IOD. They also focus on the seasonal dependence of those characteristics in both time and frequency domains. Among the Nino-3.4 SST, IOD, and SSTs over the tropical western Indian Ocean (WIO) and eastern Indian Ocean (EIO), the WIO SST has the strongest annual and semiannual oscillations. While the Nino-3.4 SST has large inter-annual variability that is only second to its annual variability, the IOD is characterized by the largest semiannual oscillation, which is even stronger than its annual oscillation. The IOD is strongly and stably related to the EIO SST in a wide range of frequency bands and in all seasons. However, it is less significantly related to the WIO SST in the boreal winter and spring. There exists a generally weak and unstable relationship between the WIO and EIO SSTs, especially in the biennial and higher frequency bands. The relationship is especially weak in summer and fall, when IOD is apparent, but appears highly positive in winter and spring, when the IOD is unimportantly weak and even disappears. This feature reflects a caution in the definition and application of IOD. The Nino-3.4 SST has a strong positive relationship with the WIO SST in all seasons, mainly in the biennial and longer frequency bands. However, it shows no significant relationship with the EIO SST in summer and fall, and with IOD in winter and spring. 展开更多
关键词 Indian Ocean dipole ENSO time-frequency relationship coherence analysis
在线阅读 下载PDF
Improving the resolution of seismic traces based on the secondary time-frequency spectrum 被引量:12
15
作者 Wang De-Ying Huang Jian.Ping +2 位作者 Kong Xue Li Zhen-Chun Wang Jiao 《Applied Geophysics》 SCIE CSCD 2017年第2期236-246,323,共12页
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th... The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR). 展开更多
关键词 RESOLUTION S transform time-frequency spectrum time-variant wavelet spectrum-modeling deconvolution Q compensation
在线阅读 下载PDF
ECCM scheme against interrupted sampling repeater jammer based on time-frequency analysis 被引量:41
16
作者 Shixian Gong Xizhang Wei Xiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期996-1003,共8页
The interrupted sampling repeater jamming(ISRJ) is an effective deception jamming method for coherent radar, especially for the wideband linear frequency modulation(LFM) radar. An electronic counter-countermeasure... The interrupted sampling repeater jamming(ISRJ) is an effective deception jamming method for coherent radar, especially for the wideband linear frequency modulation(LFM) radar. An electronic counter-countermeasure(ECCM) scheme is proposed to remove the ISRJ-based false targets from the pulse compression result of the de-chirping radar. Through the time-frequency(TF) analysis of the radar echo signal, it can be found that the TF characteristics of the ISRJ signal are discontinuous in the pulse duration because the ISRJ jammer needs short durations to receive the radar signal. Based on the discontinuous characteristics a particular band-pass filter can be generated by two alternative approaches to retain the true target signal and suppress the ISRJ signal. The simulation results prove the validity of the proposed ECCM scheme for the ISRJ. 展开更多
关键词 interrupted sampling repeater jamming(ISRJ) de-chirping radar time-frequency(TF) electronic counter-countermeasure(ECCM)
在线阅读 下载PDF
Time-frequency response spectrum of rotational ground motion and its application 被引量:16
17
作者 Wei Che Qifeng Luo 《Earthquake Science》 CSCD 2010年第1期71-77,共7页
The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS... The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable. 展开更多
关键词 Jiji (Chi-Chi) earthquake ground motion rotational component time-frequency response spectrum damage line
在线阅读 下载PDF
Frequency-Domain GTLS Identification Combined with Time-Frequency Filtering for Flight Flutter Modal Parameter Identification 被引量:3
18
作者 唐炜 史忠科 李洪超 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期44-51,共8页
The aim of this paper is to present a new method for flight flutter modal parameter identification in noisy environment. This method employs a time-frequency (TF) filter to reduce the noise before identification, wh... The aim of this paper is to present a new method for flight flutter modal parameter identification in noisy environment. This method employs a time-frequency (TF) filter to reduce the noise before identification, which depends on the localization property of sweep excitation in TF domain. Then, a generalized total least square (GTLS) identification algorithm based on stochastic framework is applied to the enhanced data. System identification with noisy data is transformed into a generalized total least square problem, and the solution is carried out by the generalized singular value decomposition (GSVD) to avoid the intensive nonlinear optimization computation. A nearly maximum likelihood property can be achieved by 'optimally' weighted generalized total least square. Finally, the efficiency of the method is illustrated by means of flight test data. 展开更多
关键词 FLUTTER IDENTIFICATION time-frequency filtering GTLS
在线阅读 下载PDF
Working condition recognition of sucker rod pumping system based on 4-segment time-frequency signature matrix and deep learning 被引量:2
19
作者 Yun-Peng He Hai-Bo Cheng +4 位作者 Peng Zeng Chuan-Zhi Zang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期641-653,共13页
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff... High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS. 展开更多
关键词 Sucker-rod pumping system Dynamometer card Working condition recognition Deep learning time-frequency signature time-frequency signature matrix
原文传递
Multi-Objective Deep Reinforcement Learning Based Time-Frequency Resource Allocation for Multi-Beam Satellite Communications 被引量:6
20
作者 Yuanzhi He Biao Sheng +2 位作者 Hao Yin Di Yan Yingchao Zhang 《China Communications》 SCIE CSCD 2022年第1期77-91,共15页
Resource allocation is an important problem influencing the service quality of multi-beam satellite communications.In multi-beam satellite communications, the available frequency bandwidth is limited, users requiremen... Resource allocation is an important problem influencing the service quality of multi-beam satellite communications.In multi-beam satellite communications, the available frequency bandwidth is limited, users requirements vary rapidly, high service quality and joint allocation of multi-dimensional resources such as time and frequency are required. It is a difficult problem needs to be researched urgently for multi-beam satellite communications, how to obtain a higher comprehensive utilization rate of multidimensional resources, maximize the number of users and system throughput, and meet the demand of rapid allocation adapting dynamic changed the number of users under the condition of limited resources, with using an efficient and fast resource allocation algorithm.In order to solve the multi-dimensional resource allocation problem of multi-beam satellite communications, this paper establishes a multi-objective optimization model based on the maximum the number of users and system throughput joint optimization goal, and proposes a multi-objective deep reinforcement learning based time-frequency two-dimensional resource allocation(MODRL-TF) algorithm to adapt dynamic changed the number of users and the timeliness requirements. Simulation results show that the proposed algorithm could provide higher comprehensive utilization rate of multi-dimensional resources,and could achieve multi-objective joint optimization,and could obtain better timeliness than traditional heuristic algorithms, such as genetic algorithm(GA)and ant colony optimization algorithm(ACO). 展开更多
关键词 multi-beam satellite communications time-frequency resource allocation multi-objective optimization deep reinforcement learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部