期刊文献+
共找到438篇文章
< 1 2 22 >
每页显示 20 50 100
Diketopiperazines with anti-skin inflammation from marine-derived endophytic fungus Aspergillus sp.and configurational reassignment of aspertryptanthrins
1
作者 Jin Yang Xianmei Xiong +7 位作者 Lizhi Gong Fengyu Gan Hanling Shi Bin Zhu Haizhen Wu Xiujuan Xin Lingyi Kong Faliang An 《Chinese Journal of Natural Medicines》 2025年第8期980-989,共10页
Two novel diketopiperazines(1 and 5),along with ten known compounds(2−4,6−12)demonstrating significant skin inflammation inhibition,were isolated from a marine-derived fungus identified as Aspergillus sp.FAZW0001.The ... Two novel diketopiperazines(1 and 5),along with ten known compounds(2−4,6−12)demonstrating significant skin inflammation inhibition,were isolated from a marine-derived fungus identified as Aspergillus sp.FAZW0001.The structural elucidation and configurational reassessments of compounds 1−5 were established through comprehensive spectral analyses,with their absolute configurations determined via single crystal X-ray diffraction using Cu Kαradiation,Marfey’s method,and comparison between experimental and calculated electronic circular dichroism(ECD)spectra.Compounds 1,2,and 8 exhibited significant anti-inflammatory activities in Propionibacterium acnes(P.acnes)-induced human monocyte cell lines.Compound 8 demonstrated the ability to down-regulate interleukin-1β(IL-1β)expression by inhibiting Toll-like receptor 2(TLR2)expression and modulating the activation of myeloid differentiation factor 88(MyD88),mitogen-activated protein kinase(MAPK),and nuclear factorκB(NF-κB)signaling pathways,thus reducing the cellular inflammatory response induced by P.acnes.Additionally,compound 8 showed the capacity to suppress mitochondrial reactive oxygen species(ROS)production and nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)inflammasome activation,thereby reducing IL-1βmaturation and secretion.A three-dimensional quantitative structure-activity relationships(3D-QSAR)model was applied to compounds 5−12 to analyze their anti-inflammatory structure-activity relationships. 展开更多
关键词 DIKETOPIPERAZINES Aspergillus sp. Configurational reassignment Anti-skin inflammation
原文传递
Optimizing aircraft-gate reassignment following airport disruptions:A hierarchical column-and-row generation approach
2
作者 Shaochuan ZHU Lei ZHENG +3 位作者 Kaiquan CAI Ying XIONG Zhe LIANG Wenbo DU 《Chinese Journal of Aeronautics》 2025年第2期353-369,共17页
Airport disruptions often pose challenges in assigning aircraft to gates,resulting in infeasible planned schedules.In particular,a large number of transfer passengers miss their connections in the context of disruptio... Airport disruptions often pose challenges in assigning aircraft to gates,resulting in infeasible planned schedules.In particular,a large number of transfer passengers miss their connections in the context of disruptions,which cause huge economic losses to airlines and serious passengers’dissatisfaction.This paper proposes a set-partitioning-based model to optimize Aircraft-Gate Reassignment with Transfer Passenger Connections(AGRP-TPC),which incorporates flexible gate-swap and aircraft-delay operations to mitigate the overall impact of disruptions.To efficiently solve the model,we introduce the concepts of additive-transfer and nonstop-transfer to handle passenger connections,and develop a Hierarchical Column-and-Row Generation(HCRG)approach guided by airport terminal space attribute.The column generation and row generation procedures solve iteratively until no new variables and constraints are generated.In addition,a follow-on strategy and a diving heuristic are designed to efficiently obtain high-quality solutions.We evaluate the proposed approach using various instances from a major Chinese international airport.Computational results demonstrate that our approach outperforms the comparison algorithms and produces good solutions within the time limit.Detailed results indicate that our approach effectively reduces overall losses in aircraft-gate reassignment following disruptions,and it can serve as an auxiliary decision-making tool for airport operators and airlines. 展开更多
关键词 Airport disruptions Aircraft-gate reassignment Column generation Heuristic methods Passenger connections
原文传递
Abnormal Signal Recognition with Time-Frequency Spectrogram:A Deep Learning Approach
3
作者 Kuang Tingyan Chen Huichao +3 位作者 Han Lu He Rong Wang Wei Ding Guoru 《China Communications》 2025年第11期305-319,共15页
With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communicat... With the increasingly complex and changeable electromagnetic environment,wireless communication systems are facing jamming and abnormal signal injection,which significantly affects the normal operation of a communication system.In particular,the abnormal signals may emulate the normal signals,which makes it very challenging for abnormal signal recognition.In this paper,we propose a new abnormal signal recognition scheme,which combines time-frequency analysis with deep learning to effectively identify synthetic abnormal communication signals.Firstly,we emulate synthetic abnormal communication signals including seven jamming patterns.Then,we model an abnormal communication signals recognition system based on the communication protocol between the transmitter and the receiver.To improve the performance,we convert the original signal into the time-frequency spectrogram to develop an image classification algorithm.Simulation results demonstrate that the proposed method can effectively recognize the abnormal signals under various parameter configurations,even under low signal-to-noise ratio(SNR)and low jamming-to-signal ratio(JSR)conditions. 展开更多
关键词 abnormal signal recognition deep learning time-frequency analysis
在线阅读 下载PDF
Convolutional sparse coding network for sparse seismic time-frequency representation
4
作者 Qiansheng Wei Zishuai Li +3 位作者 Haonan Feng Yueying Jiang Yang Yang Zhiguo Wang 《Artificial Intelligence in Geosciences》 2025年第1期299-304,共6页
Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-f... Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-forms,which leverage sparse coding(SC),have gained significant attention in the geosciences due to their ability to achieve high TF resolution.However,the iterative approaches typically employed in sparse TF transforms are computationally intensive,making them impractical for real seismic data analysis.To address this issue,we propose an interpretable convolutional sparse coding(CSC)network to achieve high TF resolution.The proposed model is generated based on the traditional short-time Fourier transform(STFT)transform and a modified UNet,named ULISTANet.In this design,we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm(LISTA)blocks,a specialized form of CSC.The LISTA block,which evolves from the traditional iterative shrinkage thresholding algorithm(ISTA),is optimized for extracting sparse features more effectively.Furthermore,we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet.Finally,the proposed method’s performance is subsequently validated using both synthetic and field data,demonstrating its potential for enhanced seismic data analysis. 展开更多
关键词 time-frequency transform Iteration shrinkage threshold algorithm Deep learning UNet
在线阅读 下载PDF
Application of sparse time-frequency decomposition to seismic data 被引量:3
5
作者 王雄文 王华忠 《Applied Geophysics》 SCIE CSCD 2014年第4期447-458,510,共13页
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time... The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results. 展开更多
关键词 time-frequency analysis sparse time-frequency decomposition nonstationary signal RESOLUTION
在线阅读 下载PDF
TVAR Time-frequency Analysis for Non-stationary Vibration Signals of Spacecraft 被引量:7
6
作者 杨海 程伟 朱虹 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期423-432,共10页
Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional... Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution. 展开更多
关键词 non-stationary random vibration time-frequency distribution process neural network empirical mode decomposition
在线阅读 下载PDF
Intelligibility evaluation of enhanced whisper in joint time-frequency domain 被引量:1
7
作者 周健 魏昕 +1 位作者 梁瑞宇 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期261-266,共6页
Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyze... Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context. 展开更多
关键词 whispered speech enhancement intelligibilityevaluation real-valued discrete Gabor transform joint time-frequency analysis
在线阅读 下载PDF
Effects of Gabor transform parameters on signa time-frequency resolution
8
作者 尹陈 贺振华 黄德济 《Applied Geophysics》 SCIE CSCD 2006年第3期169-173,共5页
In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effect... In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given. 展开更多
关键词 Gabor transform time-frequency analysis RESOLUTION Gaussion window sampling interval.
在线阅读 下载PDF
Time-Frequency Signal Processing for Gas-Liquid Two Phase Flow Through a Horizontal Venturi Based on Adaptive Optimal-Kernel Theory 被引量:10
9
作者 孙斌 王二朋 +2 位作者 丁洋 白宏震 黄咏梅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期243-252,共10页
A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal o... A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal of gas-liquid two-phase flow was preprocessed,and then the AOK theory was used to analyze the dynamic differ-ential pressure signal.The mechanism of two-phase flow was discussed through the time-frequency spectrum.On the condition of steady water flow rate,with the increasing of gas flow rate,the flow pattern changes from bubbly flow to slug flow,then to plug flow,meanwhile,the energy distribution of signal fluctuations show significant change that energy transfer from 15-35 Hz band to 0-8 Hz band;moreover,when the flow pattern is slug flow,there are two wave peaks showed in the time-frequency spectrum.Finally,a number of characteristic variables were defined by using the time-frequency spectrum and the ridge of AOK.When the characteristic variables were visu-ally analyzed,the relationship between different combination of characteristic variables and flow patterns would be gotten.The results show that,this method can explain the law of flow in different flow patterns.And characteristic variables,defined by this method,can get a clear description of the flow information.This method provides a new way for the flow pattern identification,and the percentage of correct prediction is up to 91.11%. 展开更多
关键词 adaptive optimal-kernel two-phase flow time-frequency spectrum time-frequency ridge flow pattern identification
在线阅读 下载PDF
Time-Frequency Characteristics of the Relationships Between Tropical Indo-Pacific SSTs 被引量:9
10
作者 Song YANG 丁晓利 +1 位作者 郑大伟 Soo-Hyun YOO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期343-359,共17页
In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By a... In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By analyzing a long data record, the authors focus on the time-frequency characteristics of these relationships, and of the structure of IOD. They also focus on the seasonal dependence of those characteristics in both time and frequency domains. Among the Nino-3.4 SST, IOD, and SSTs over the tropical western Indian Ocean (WIO) and eastern Indian Ocean (EIO), the WIO SST has the strongest annual and semiannual oscillations. While the Nino-3.4 SST has large inter-annual variability that is only second to its annual variability, the IOD is characterized by the largest semiannual oscillation, which is even stronger than its annual oscillation. The IOD is strongly and stably related to the EIO SST in a wide range of frequency bands and in all seasons. However, it is less significantly related to the WIO SST in the boreal winter and spring. There exists a generally weak and unstable relationship between the WIO and EIO SSTs, especially in the biennial and higher frequency bands. The relationship is especially weak in summer and fall, when IOD is apparent, but appears highly positive in winter and spring, when the IOD is unimportantly weak and even disappears. This feature reflects a caution in the definition and application of IOD. The Nino-3.4 SST has a strong positive relationship with the WIO SST in all seasons, mainly in the biennial and longer frequency bands. However, it shows no significant relationship with the EIO SST in summer and fall, and with IOD in winter and spring. 展开更多
关键词 Indian Ocean dipole ENSO time-frequency relationship coherence analysis
在线阅读 下载PDF
A STUDY ON THE APPLICATION OF FY-2E CLOUD DRIFT WIND HEIGHT REASSIGNMENT IN NUMERICAL FORECAST OF TYPHOON CHANTHU(1003) TRACK 被引量:2
11
作者 李昊睿 丁伟钰 +2 位作者 薛纪善 陈子通 高郁东 《Journal of Tropical Meteorology》 SCIE 2015年第1期34-42,共9页
In this paper, we first analyzed cloud drift wind(CDW) data distribution in the vertical direction, and then reassigned the height of every CDW in the research domain in terms of background information, and finally, c... In this paper, we first analyzed cloud drift wind(CDW) data distribution in the vertical direction, and then reassigned the height of every CDW in the research domain in terms of background information, and finally, conducted contrast numerical experiments of assimilating the CDW data before and after reassignment to examine the impacts on the forecast of the track of Typhoon Chanthu(1003) from 00:00(Coordinated Universal Time) 21 July to 00:00 UTC23 July, 2010. The analysis results of the CDW data indicate that the number of CDWs is mainly distributed in the midand upper-troposphere above 500 h Pa, with the maximum number at about 300 h Pa. The height reassigning method mentioned in this work may update the height effectively, and the CDW data are distributed reasonably and no obvious contradiction occurs in the horizontal direction after height reassignment. After assimilating the height-reassigned CDW data, especially the water vapor CDW data, the initial wind field around Typhoon Chanthu(1003) became more reasonable, and then the steering current leading the typhoon to move to the correct location became stronger. As a result, the numerical track predictions are improved. 展开更多
关键词 height reassignment cloud drift wind variational assimilation typhoon track GRAPES
在线阅读 下载PDF
Improving the resolution of seismic traces based on the secondary time-frequency spectrum 被引量:12
12
作者 Wang De-Ying Huang Jian.Ping +2 位作者 Kong Xue Li Zhen-Chun Wang Jiao 《Applied Geophysics》 SCIE CSCD 2017年第2期236-246,323,共12页
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th... The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR). 展开更多
关键词 RESOLUTION S transform time-frequency spectrum time-variant wavelet spectrum-modeling deconvolution Q compensation
在线阅读 下载PDF
ECCM scheme against interrupted sampling repeater jammer based on time-frequency analysis 被引量:41
13
作者 Shixian Gong Xizhang Wei Xiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期996-1003,共8页
The interrupted sampling repeater jamming(ISRJ) is an effective deception jamming method for coherent radar, especially for the wideband linear frequency modulation(LFM) radar. An electronic counter-countermeasure... The interrupted sampling repeater jamming(ISRJ) is an effective deception jamming method for coherent radar, especially for the wideband linear frequency modulation(LFM) radar. An electronic counter-countermeasure(ECCM) scheme is proposed to remove the ISRJ-based false targets from the pulse compression result of the de-chirping radar. Through the time-frequency(TF) analysis of the radar echo signal, it can be found that the TF characteristics of the ISRJ signal are discontinuous in the pulse duration because the ISRJ jammer needs short durations to receive the radar signal. Based on the discontinuous characteristics a particular band-pass filter can be generated by two alternative approaches to retain the true target signal and suppress the ISRJ signal. The simulation results prove the validity of the proposed ECCM scheme for the ISRJ. 展开更多
关键词 interrupted sampling repeater jamming(ISRJ) de-chirping radar time-frequency(TF) electronic counter-countermeasure(ECCM)
在线阅读 下载PDF
Parametric adaptive time-frequency representation based on time-sheared Gabor atoms 被引量:2
14
作者 Ma Shiwei Zhu Xiaojin Chen Guanghua Wang Jian Cao Jialin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期1-7,共7页
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ... A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing. 展开更多
关键词 time-frequency analysis Gabor atom Time-shear Adaptive signal decomposition time-frequency distribution.
在线阅读 下载PDF
Time-frequency response spectrum of rotational ground motion and its application 被引量:16
15
作者 Wei Che Qifeng Luo 《Earthquake Science》 CSCD 2010年第1期71-77,共7页
The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS... The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable. 展开更多
关键词 Jiji (Chi-Chi) earthquake ground motion rotational component time-frequency response spectrum damage line
在线阅读 下载PDF
Frequency-Domain GTLS Identification Combined with Time-Frequency Filtering for Flight Flutter Modal Parameter Identification 被引量:3
16
作者 唐炜 史忠科 李洪超 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期44-51,共8页
The aim of this paper is to present a new method for flight flutter modal parameter identification in noisy environment. This method employs a time-frequency (TF) filter to reduce the noise before identification, wh... The aim of this paper is to present a new method for flight flutter modal parameter identification in noisy environment. This method employs a time-frequency (TF) filter to reduce the noise before identification, which depends on the localization property of sweep excitation in TF domain. Then, a generalized total least square (GTLS) identification algorithm based on stochastic framework is applied to the enhanced data. System identification with noisy data is transformed into a generalized total least square problem, and the solution is carried out by the generalized singular value decomposition (GSVD) to avoid the intensive nonlinear optimization computation. A nearly maximum likelihood property can be achieved by 'optimally' weighted generalized total least square. Finally, the efficiency of the method is illustrated by means of flight test data. 展开更多
关键词 FLUTTER IDENTIFICATION time-frequency filtering GTLS
在线阅读 下载PDF
Working condition recognition of sucker rod pumping system based on 4-segment time-frequency signature matrix and deep learning 被引量:2
17
作者 Yun-Peng He Hai-Bo Cheng +4 位作者 Peng Zeng Chuan-Zhi Zang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期641-653,共13页
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff... High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS. 展开更多
关键词 Sucker-rod pumping system Dynamometer card Working condition recognition Deep learning time-frequency signature time-frequency signature matrix
原文传递
Multi-Objective Deep Reinforcement Learning Based Time-Frequency Resource Allocation for Multi-Beam Satellite Communications 被引量:6
18
作者 Yuanzhi He Biao Sheng +2 位作者 Hao Yin Di Yan Yingchao Zhang 《China Communications》 SCIE CSCD 2022年第1期77-91,共15页
Resource allocation is an important problem influencing the service quality of multi-beam satellite communications.In multi-beam satellite communications, the available frequency bandwidth is limited, users requiremen... Resource allocation is an important problem influencing the service quality of multi-beam satellite communications.In multi-beam satellite communications, the available frequency bandwidth is limited, users requirements vary rapidly, high service quality and joint allocation of multi-dimensional resources such as time and frequency are required. It is a difficult problem needs to be researched urgently for multi-beam satellite communications, how to obtain a higher comprehensive utilization rate of multidimensional resources, maximize the number of users and system throughput, and meet the demand of rapid allocation adapting dynamic changed the number of users under the condition of limited resources, with using an efficient and fast resource allocation algorithm.In order to solve the multi-dimensional resource allocation problem of multi-beam satellite communications, this paper establishes a multi-objective optimization model based on the maximum the number of users and system throughput joint optimization goal, and proposes a multi-objective deep reinforcement learning based time-frequency two-dimensional resource allocation(MODRL-TF) algorithm to adapt dynamic changed the number of users and the timeliness requirements. Simulation results show that the proposed algorithm could provide higher comprehensive utilization rate of multi-dimensional resources,and could achieve multi-objective joint optimization,and could obtain better timeliness than traditional heuristic algorithms, such as genetic algorithm(GA)and ant colony optimization algorithm(ACO). 展开更多
关键词 multi-beam satellite communications time-frequency resource allocation multi-objective optimization deep reinforcement learning
在线阅读 下载PDF
Ultrasonic attenuation estimation based on time-frequency analysis 被引量:3
19
作者 Gao Feng Wei Jian-Xin Di Bang-Rang 《Applied Geophysics》 SCIE CSCD 2019年第4期414-426,559,共14页
The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new meth... The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new method for estimating ultrasonic attenuation using a spectral ratio based on an S transform(SR-ST)is presented to improve the stability and accuracy of Q estimation.The variable window of ST is used to solve the time window problem.We add two window factors to the Gaussian window function in the ST.The window factors can adjust the scale of the Gaussian window function to the ultrasonic signal,which reduces the calculation error attributed to the conventional Gaussian window function.Meanwhile,the frequency bandwidth selection rules for the linear regression of the amplitude ratio are given to further improve stability and accuracy.First,the feasibility and influencing factors of the SR-ST method are studied through numerical testing and standard sample experiments.Second,artificial samples with different Q values are used to study the adaptability and stability of the SR-ST method.Finally,a further comparison between the new method and the conventional spectral ratio method(SR)is conducted using rock field samples,again addressing stability and accuracy.The experimental results show that this method will yield an error of approximately 36%using the conventional Gaussian window function.This problem can be solved by adding the time window factors to the Gaussian window function.The frequency bandwidth selection rules and mean slope value of the amplitude ratio used in the SR-ST method can ensure that the maximum error of different Q values estimation(Q>15)is less than 10%. 展开更多
关键词 Q value estimation time-frequency spectrum ST Window factor Ultrasonic attenuation
在线阅读 下载PDF
Surface wave attenuation based polarization attributes in time-frequency domain for multicomponent seismic data 被引量:2
20
作者 Kong Xuan-Lin Chen Hui +3 位作者 Hu Zhi-Quan Kang Jia-Xing Xu Tian-Ji and Li Lu-Ming 《Applied Geophysics》 SCIE CSCD 2018年第1期99-110,149,共13页
In the paper, we propose a surface wave suppression method in time-frequency domain based on the wavelet transform, considering the characteristic difference of polarization attributes, amplitude energy and apparent v... In the paper, we propose a surface wave suppression method in time-frequency domain based on the wavelet transform, considering the characteristic difference of polarization attributes, amplitude energy and apparent velocity between the effective signals and strong surface waves. First, we use the proposed method to obtain time-frequency spectra of seismic signals by using the wavelet transform and calculate the instantaneous polarizability at each point based on instantaneous polarization analysis. Then, we separate the surface wave area from the signal area based on the surface-wave apparent velocity and the average energy of the signal. Finally, we combine the polarizability, energy, and frequency characteristic to identify and suppress the signal noise. Model and field data are used to test the proposed filtering method. 展开更多
关键词 Vector seismic trace POLARIZATION time-frequency domain surface wave denoising
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部