期刊文献+
共找到500篇文章
< 1 2 25 >
每页显示 20 50 100
斜齿轮表面形貌分形特征对时变接触刚度的影响 被引量:3
1
作者 吴石 高增阔 +1 位作者 王明珠 赵成睿 《中国机械工程》 北大核心 2025年第1期59-68,77,共11页
基于改进的W-M分形函数,利用齿高和齿宽表征斜齿轮齿面的表面形貌。采用圆锥微凸体并考虑啮合过程中斜齿轮接触曲率半径的时变性建立了斜齿轮时变接触刚度模型,计算发现基于圆锥微凸体模型计算的时变啮合刚度与ISO6336-1—2006标准计算... 基于改进的W-M分形函数,利用齿高和齿宽表征斜齿轮齿面的表面形貌。采用圆锥微凸体并考虑啮合过程中斜齿轮接触曲率半径的时变性建立了斜齿轮时变接触刚度模型,计算发现基于圆锥微凸体模型计算的时变啮合刚度与ISO6336-1—2006标准计算所得结果接近。研究结果表明,斜齿轮的时变接触载荷和时变接触刚度随着分形维数、特征尺度系数、量纲一接触面积、材料塑性指数的变化而表现出不同的变化趋势。 展开更多
关键词 斜齿轮啮合 表面形貌 分形特征 圆锥微凸体 时变接触刚度
在线阅读 下载PDF
基于分形维数和BiLSTM的离心泵空化状态识别方法
2
作者 邹淑云 刘忠 +2 位作者 王文豪 喻哲钦 孙旭辉 《振动与冲击》 北大核心 2025年第4期305-312,共8页
针对离心泵空化状态下压力脉动信号的非线性和复杂程度以及浅层机器学习方法在数据深度挖掘上的不足,提出一种基于分形维数和双向长短时记忆神经网络的离心泵空化状态识别方法。通过离心泵空化试验获得不同空化状态压力脉动信号。采用... 针对离心泵空化状态下压力脉动信号的非线性和复杂程度以及浅层机器学习方法在数据深度挖掘上的不足,提出一种基于分形维数和双向长短时记忆神经网络的离心泵空化状态识别方法。通过离心泵空化试验获得不同空化状态压力脉动信号。采用固有时间尺度分解对压力脉动信号进行处理,筛选出有效分量,计算其盒维数和关联维数,构建空化分形特征向量。将空化特征向量导入基于双向长短时记忆神经网络的空化状态识别模型。研究结果表明,有效分量的盒维数及关联维数随空化系数的变化具有明显的规律性,且模型识别的准确率高达92.8%,能够实现离心泵空化状态的识别。 展开更多
关键词 离心泵 空化 压力脉动 固有时间尺度分解 分形维数 双向长短时记忆神经网络
在线阅读 下载PDF
利用形变时序分形特征识别高山冰川区滑坡 被引量:1
3
作者 房颖晖 李郎平 +3 位作者 杨文涛 兰恒星 田静 高佳鑫 《地球信息科学学报》 北大核心 2025年第1期239-255,共17页
【目的】探究利用时序形变分形特征识别高山冰川区滑坡的方法并分析其适用性。【方法】基于查莫利滑坡及其相邻冰川的形变时间序列描述其斜率(平均形变速率)及分形特征差异,利用聚类分析区分滑坡区域与冰川并进行影响因素分析。【结果... 【目的】探究利用时序形变分形特征识别高山冰川区滑坡的方法并分析其适用性。【方法】基于查莫利滑坡及其相邻冰川的形变时间序列描述其斜率(平均形变速率)及分形特征差异,利用聚类分析区分滑坡区域与冰川并进行影响因素分析。【结果】与冰川相比,滑坡的形变时序具有较高的分形维数和较低的分形拟合优度。虽然滑坡与冰川在形变时序的斜率(平均形变速率)上也存在较大差异,但仅使用形变速率难以对滑坡进行聚类识别,准确率仅为61.70%;而使用形变时序的分形指标(包括分形维数和分形拟合优度)可将聚类分析的准确率显著提升至近84.00%。基于形变时序分形特征进行高山冰川区滑坡识别的适用性,根本原因在于滑坡和冰川在物质组成、影响因素和发展演化等方面存在差异。相较冰川,滑坡物质组成更复杂、更易受多种因素影响、形变时序的波动性更强。【结论】利用形变时序分形特征能够成功识别高山冰川区滑坡,在全球变暖背景下,该方法预期可为高山冰川区的滑坡识别、进而为高山冰川区的防灾减灾提供一定的支撑。 展开更多
关键词 高山冰川区 滑坡 识别 形变时间序列 分形维数 分形拟合优度 平均形变速率
原文传递
基于分形结构的宽带超薄吸收超表面
4
作者 魏秀丽 姚静锋 +2 位作者 李健飞 袁承勋 周忠祥 《飞控与探测》 2025年第4期27-36,共10页
微波吸收器覆盖在物体表面时可以降低微波反射,被广泛用于通信、航空航天、国防和军事等领域,但传统结构的微波吸收器难以兼顾吸波带宽、尺寸和吸收率。从分形结构出发,提出了一种单层宽带超表面结构,并利用有限时域差分法(Finite-Diffe... 微波吸收器覆盖在物体表面时可以降低微波反射,被广泛用于通信、航空航天、国防和军事等领域,但传统结构的微波吸收器难以兼顾吸波带宽、尺寸和吸收率。从分形结构出发,提出了一种单层宽带超表面结构,并利用有限时域差分法(Finite-Difference Time-Domain,FDTD)进行求解。研究表明,该结构在10.1~15.9 GHz的宽带频率范围内提供了80%以上的高吸收率,且具有超薄特性,厚度为1.37 mm,约为0.046λ(λ是最低频率10.1 GHz对应的波长,约为29.7 mm)。该超表面以二阶谢尔宾斯基分形结构为结构单元,进一步分析表明,该吸收器具有86%的分数带宽(Fractional Bandwidth,FBW)且在40°的入射角内仍能有效吸收。该装置以简单的结构提供了微波宽带吸收,在隐身技术、电磁兼容性和通信技术等领域具有重要的应用前景。 展开更多
关键词 超表面 宽带吸收 有限时域差分法 分形结构 微波吸收器
在线阅读 下载PDF
爆破作用下邻近巷道围岩响应特征的3DEC模拟
5
作者 文兴宝 《矿业研究与开发》 北大核心 2025年第7期177-184,共8页
为研究爆破作用对邻近巷道的动态响应特征,以某矿山邻近巷道为工程背景,采用3DEC离散元仿真软件,建立考虑岩体非连续特性的黏结块体模型,模拟爆破载荷作用下邻近巷道围岩的振动速度场、应力波传播及裂隙演化规律,分析不同爆破上升时间... 为研究爆破作用对邻近巷道的动态响应特征,以某矿山邻近巷道为工程背景,采用3DEC离散元仿真软件,建立考虑岩体非连续特性的黏结块体模型,模拟爆破载荷作用下邻近巷道围岩的振动速度场、应力波传播及裂隙演化规律,分析不同爆破上升时间下的围岩响应特征。结果表明:短上升时间使爆破波能量集中释放,导致围岩质点峰值振速较高,但衰减迅速,而长上升时间使爆破波能量分布更均匀,但围岩质点峰值振速显著减小,对围岩的累积损伤更显著;裂隙分形维数演化呈现两阶段特征,爆破初期急剧增加,后期缓慢增长,长上升时间对围岩损伤范围扩展的促进作用更强;基于应力波传播与围岩质点峰值振速分布规律,短上升时间适用于高效爆破场景,而长上升时间需配合装药控制以减少围岩损伤。研究成果为邻近巷道爆破开挖的安全设计与施工控制提供了理论依据。 展开更多
关键词 邻近巷道 爆破 上升时间 分形维数 离散元仿真
原文传递
一种基于柏林噪声和分形布朗运动的过程纹理合成方法
6
作者 李茄濡 何晓曦 +2 位作者 刘应浒 孟繁林 朱群 《成都信息工程大学学报》 2025年第1期14-20,共7页
针对现有的人工智能生成纹理和基于样图的纹理合成中存在的不可控、缺乏灵活性、低实时性等问题,运用过程纹理生成技术,提出一种基于柏林噪声和分形布朗运动的纹理生成算法,用于合成真实木制纹理特征。该算法首先将待生成的纹理空间划... 针对现有的人工智能生成纹理和基于样图的纹理合成中存在的不可控、缺乏灵活性、低实时性等问题,运用过程纹理生成技术,提出一种基于柏林噪声和分形布朗运动的纹理生成算法,用于合成真实木制纹理特征。该算法首先将待生成的纹理空间划分为规则且均匀的网格点,同时在每个网格顶点处随机生成一个梯度向量,然后使用三线性插值方法对网格点上的梯度向量进行插值运算,同时将多频率、多振幅的噪声纹通过分形算法加权叠加处理,生成一个平滑的纹理图案,在此基础上对纹理进行缩放、扭曲、添加木眼来模拟真实的纹理结构。实验证明该算法能真实地模拟木制纹理的特征,且具有实时、高效、可定制性强等优点,在游戏、建模、虚拟现实等领域具有广泛的应用价值。 展开更多
关键词 过程纹理 柏林噪声 分形 插值 实时
在线阅读 下载PDF
高压气体破岩振动信号混沌分形特征研究
7
作者 付晓强 俞缙 +2 位作者 戴良玉 彭仪欣 邵艺强 《矿业科学学报》 北大核心 2025年第4期618-628,共11页
为探究高压气体破岩振动信号的非线性混沌分形特征,研发新型破岩气体发生器并选取岩性稳定的石灰岩露天矿场开展气体破岩试验,采用高速摄影呈现破岩过程并监测振动效应,精细化提取破岩振动信号的非线性特征。结果表明:相较于乳化炸药爆... 为探究高压气体破岩振动信号的非线性混沌分形特征,研发新型破岩气体发生器并选取岩性稳定的石灰岩露天矿场开展气体破岩试验,采用高速摄影呈现破岩过程并监测振动效应,精细化提取破岩振动信号的非线性特征。结果表明:相较于乳化炸药爆破,高压气体破岩具有高频低幅特征,其信号分形盒维数值更小且频域分布更为有限,多重分形谱开口宽度更窄且能量分布奇异性更小;随着频率的降低,气体破岩信号中包含的优势模态分量混沌吸引子在二维相平面中的轨迹表现为长轴与短轴比逐渐减小的椭圆轨迹,最终汇聚在椭圆中心稳固点附近,具有典型的混沌动力特征。研究结果为双碳目标下矿岩的安全高效开采和灾害评估提供了探索性思路。 展开更多
关键词 破岩气体发生器 破岩振动 分形特征 混沌吸引子 时频分析
在线阅读 下载PDF
A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation 被引量:4
8
作者 葛红霞 程荣军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期91-97,共7页
Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the movi... Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail. 展开更多
关键词 meshless method moving Kriging interpolation time-fractional diffusion equation
原文传递
New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics 被引量:2
9
作者 姚若侠 王伟 陈听华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第11期689-696,共8页
Motivated by the widely used ans¨atz method and starting from the modified Riemann–Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional pa... Motivated by the widely used ans¨atz method and starting from the modified Riemann–Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper. 展开更多
关键词 modified Riemann–Liouville DERIVATIVE FRACTIONAL complex transformation nonlinear space-and time-fractional partial differential equations TRAVELING wave solution
原文传递
Thoughts Concerning the Origin of Our Fractal Universe
10
作者 J. C. Botke 《Journal of Modern Physics》 2025年第1期167-197,共31页
During the past few decades, it has become clear that the distribution, sizes, and masses of cosmic structures are best described as fractal rather than homogeneous. This means that an entirely different formalism is ... During the past few decades, it has become clear that the distribution, sizes, and masses of cosmic structures are best described as fractal rather than homogeneous. This means that an entirely different formalism is needed to replace the standard perturbation model of structure formation. Recently, we have been developing a model of cosmology that accounts for a large number of the observed properties of the universe. A key component of this model is that fractal structures that later regulated the creation of both matter and radiation came into existence during the initial Planck-era inflation. Initially, the vacuum was the only existence and since time, distance, and energy were uncertain, its only property, the curvature (or energy), was most likely distributed randomly. Everything that happened after the Planck era can be described by the known laws of physics so the remaining fundamental problem is to discover how such a random beginning could organize itself into the hierarchy of highly non-random self-similar structures on all length scales that are necessary to explain the existence of all cosmic structures. In this paper, we present a variation of the standard sandpile model that points to a solution. Incidental to our review of the distributions of cosmic structures, we discovered that the apparent transition from a fractal to a homogeneous distribution of structures at a distance of about 150 Mpc is a consequence of the finite size of the universe rather than a change in the underlying statistics of the distributions. 展开更多
关键词 Early Universe Fractal Distributions NUCLEOSYNTHESIS Cosmic Structures Time-Varying Curvature
在线阅读 下载PDF
Lie Symmetry Analysis, Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy–Gibbons Equation 被引量:2
11
作者 冯连莉 田守富 +1 位作者 王秀彬 张田田 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第9期321-329,共9页
In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–K... In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method. 展开更多
关键词 time-fractional Fordy-Gibbons equation Lie symmetry method symmetry reduction exact solution conservation laws
原文传递
Time-fractional Davey–Stewartson equation:Lie point symmetries,similarity reductions,conservation laws and traveling wave solutions 被引量:1
12
作者 Baoyong Guo Yong Fang Huanhe Dong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第10期10-25,共16页
As a celebrated nonlinear water wave equation,the Davey–Stewartson equation is widely studied by researchers,especially in the field of mathematical physics.On the basis of the Riemann–Liouville fractional derivativ... As a celebrated nonlinear water wave equation,the Davey–Stewartson equation is widely studied by researchers,especially in the field of mathematical physics.On the basis of the Riemann–Liouville fractional derivative,the time-fractional Davey–Stewartson equation is investigated in this paper.By application of the Lie symmetry analysis approach,the Lie point symmetries and symmetry groups are obtained.At the same time,the similarity reductions are derived.Furthermore,the equation is converted to a system of fractional partial differential equations and a system of fractional ordinary differential equations in the sense of Riemann–Liouville fractional derivative.By virtue of the symmetry corresponding to the scalar transformation,the equation is converted to a system of fractional ordinary differential equations in the sense of Erdélyi–Kober fractional integro-differential operators.By using Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vectors and the conservation laws are derived.Finally,the traveling wave solutions are achieved and plotted. 展开更多
关键词 time-fractional Davey–Stewartson equation Lie symmetry analysis approach Lie point symmetries similarity reductions conservation laws
原文传递
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
13
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
原文传递
An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation 被引量:1
14
作者 Muhammad Yaseen Muhammad Abbas 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2020年第3期359-378,共20页
In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-s... In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling. 展开更多
关键词 time-fractional telegraph equation finite difference method Cubic trigonometric B-splines collocation method Stability CONVERGENCE
在线阅读 下载PDF
Numerical Analysis of Linear and Nonlinear Time-Fractional Subdiffusion Equations 被引量:1
15
作者 Yu bo Yang Fanhai Zeng 《Communications on Applied Mathematics and Computation》 2019年第4期621-637,共17页
In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion e... In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation. 展开更多
关键词 time-fractional subdififusion equation Convolution QUADRATURE FRACTIONAL linear MULTISTEP methods Discrete FRACTIONAL GRONWALL inequality Unconditional stability
在线阅读 下载PDF
Fractional Difference Approximations for Time-Fractional Telegraph Equation 被引量:1
16
作者 Ru Liu 《Journal of Applied Mathematics and Physics》 2018年第1期301-309,共9页
In this paper, we approximate the solution to time-fractional telegraph equation by two kinds of difference methods: the Grünwald formula and Caputo fractional difference.
关键词 time-fractional TELEGRAPH EQUATION the Grünwald FORMULA Caputo FRACTIONAL DIFFERENCE
在线阅读 下载PDF
New Exact Traveling Wave Solutions of (2 + 1)-Dimensional Time-Fractional Zoomeron Equation 被引量:2
17
作者 Zhiyun Zeng Xiaohua Liu +1 位作者 Yin Zhu Xue Huang 《Journal of Applied Mathematics and Physics》 2022年第2期333-346,共14页
In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the co... In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions. 展开更多
关键词 Exact Traveling Wave Solutions (2 + 1)-Dimensional time-fractional Zoomeron Equation The New Mapping Approach The New Extended Auxiliary Equation Approach
在线阅读 下载PDF
The Caputo–Fabrizio time-fractional Sharma–Tasso–Olver–Burgers equation and its valid approximations
18
作者 Kamyar Hosseini Mousa Ilie +3 位作者 Mohammad Mirzazadeh Dumitru Baleanu Choonkil Park Soheil Salahshour 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第7期21-29,共9页
Studying the dynamics of solitons in nonlinear time-fractional partial differential equations has received substantial attention,in the last decades.The main aim of the current investigation is to consider the time-fr... Studying the dynamics of solitons in nonlinear time-fractional partial differential equations has received substantial attention,in the last decades.The main aim of the current investigation is to consider the time-fractional Sharma–Tasso–Olver–Burgers(STOB)equation in the Caputo–Fabrizio(CF)context and obtain its valid approximations through adopting a mixed approach composed of the homotopy analysis method(HAM)and the Laplace transform.The existence and uniqueness of the solution of the time-fractional STOB equation in the CF context are investigated by demonstrating the Lipschitz condition forφ(x,t;u)as the kernel and giving some theorems.To illustrate the CF operator effect on the dynamics of the obtained solitons,several two-and threedimensional plots are formally considered.It is shown that the mixed approach is capable of producing valid approximations to the time-fractional STOB equation in the CF context. 展开更多
关键词 time-fractional Sharma-Tasso-Olver-Burgers equation Caputo-Fabrizio context mixed approach existence and uniqueness valid approximations
原文传递
HIGH-ORDER NUMERICAL METHOD FOR SOLVING A SPACE DISTRIBUTED-ORDER TIME-FRACTIONAL DIFFUSION EQUATION
19
作者 Jing LI Yingying YANG +2 位作者 Yingjun JIANG Libo FENG Boling GUO 《Acta Mathematica Scientia》 SCIE CSCD 2021年第3期801-826,共26页
This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-... This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-term fractional derivatives.Second,based on the piecewise-quadratic polynomials,we construct the nodal basis functions,and then discretize the multi-term fractional equation by the finite volume method.For the time-fractional derivative,the finite difference method is used.Finally,the iterative scheme is proved to be unconditionally stable and convergent with the accuracy O(σ^(2)+τ^(2-β)+h^(3)),whereτand h are the time step size and the space step size,respectively.A numerical example is presented to verify the effectiveness of the proposed method. 展开更多
关键词 Space distributed-order equation time-fractional diffusion equation piecewise-quadratic polynomials finite volume method stability and convergence
在线阅读 下载PDF
Variational iteration method for solving time-fractional diffusion equations in porous the medium
20
作者 吴国成 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期118-122,共5页
The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models... The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models with fractional derivatives are investigated analytically, and the results show the efficiency of the new Lagrange multiplier for fractional differential equations of arbitrary order. 展开更多
关键词 time-fractional diffusion equation Captuo derivative Riemann-Liouville derivative variational iteration method Laplace transform
原文传递
上一页 1 2 25 下一页 到第
使用帮助 返回顶部