In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable...In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.展开更多
有限新息率(Finite Rate of Innovation,FRI)采样利用已知的信号波形结构实现信号的亚奈奎斯特率采样,在宽带信息系统应用中具有广泛的前景.但是,在实际的信息系统中,信号波形结构常常因噪声、远距离传输等非理想因素而发生畸变,从而导...有限新息率(Finite Rate of Innovation,FRI)采样利用已知的信号波形结构实现信号的亚奈奎斯特率采样,在宽带信息系统应用中具有广泛的前景.但是,在实际的信息系统中,信号波形结构常常因噪声、远距离传输等非理想因素而发生畸变,从而导致FRI重构失败.本文依据波形再生的原理,提出了一种基于长短时记忆(Long and Short-Term Memory,LSTM)自动编码器的FRI重构方法.该方法利用LSTM自动编码器取代FRI采样系统中的采样核函数,通过离线训练获取畸变信号的未知波形结构,从而将波形序列投影为狄拉克特征序列,实现了波形畸变信号的FRI采样及重构.结果表明,本文的方法可以借助经典的零化滤波器有效地重构由于多径效应而发生畸变的FRI波形信号.展开更多
基金The National Natural Science Foundation of China(No.61240032)the Natural Science Foundation of Jiangsu Province(No.BK2012560)+1 种基金the College Scientific and Technological Achievements Transformation Promotion Project of Jiangsu Province(No.JH-05)the Science and Technology Support Program of Jiangsu Province(No.BE2012740)
文摘In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.
文摘有限新息率(Finite Rate of Innovation,FRI)采样利用已知的信号波形结构实现信号的亚奈奎斯特率采样,在宽带信息系统应用中具有广泛的前景.但是,在实际的信息系统中,信号波形结构常常因噪声、远距离传输等非理想因素而发生畸变,从而导致FRI重构失败.本文依据波形再生的原理,提出了一种基于长短时记忆(Long and Short-Term Memory,LSTM)自动编码器的FRI重构方法.该方法利用LSTM自动编码器取代FRI采样系统中的采样核函数,通过离线训练获取畸变信号的未知波形结构,从而将波形序列投影为狄拉克特征序列,实现了波形畸变信号的FRI采样及重构.结果表明,本文的方法可以借助经典的零化滤波器有效地重构由于多径效应而发生畸变的FRI波形信号.