A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,whic...A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.展开更多
This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals noth...This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.展开更多
This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevale...This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevalent,secure and efficient data transmission becomes crucial.The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption.Traditional image encryption relies on confusion and diffusion steps.These stages are generally implemented linearly,but this work introduces a new RSP(Random Strip Peeling)algorithm for the confusion step,which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions.The diffusion stage then employs an XOR matrix generated by the Logistic Map.Different evaluation metrics,such as entropy analysis,key sensitivity,statistical and differential attacks resistance,and robustness analysis demonstrate the proposed algorithm's lightweight,robust,and efficient.The proposed encryption scheme achieved average metric values of 99.6056 for NPCR,33.4397 for UACI,and 7.9914 for information entropy in the SIPI image dataset.It also exhibits a time complexity of O(2×M×N)for an image of size M×N.展开更多
As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be t...As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be transmitted to and processed by untrusted parties.To address this,fully homomorphic encryption(FHE)has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service(MLaaS),enabling computation on encrypted data without revealing the plaintext.Nevertheless,FHE remains computationally expensive.As a result,approximate homomorphic encryption(AHE)schemes,such as CKKS,have attracted attention due to their efficiency.In our previous work,we proposed RP-OKC,a CKKS-based clustering scheme implemented via TenSEAL.However,errors inherent to CKKS operations—termed CKKS-errors—can affect the accuracy of the result after decryption.Since these errors can be mitigated through post-decryption rounding,we propose a data pre-scaling technique to increase the number of significant digits and reduce CKKS-errors.Furthermore,we introduce an Operation-Error-Estimation(OEE)table that quantifies upper-bound error estimates for various CKKS operations.This table enables error-aware decryption correction,ensuring alignment between encrypted and plaintext results.We validate our method on K-means clustering using the Kaggle Customer Segmentation dataset.Experimental results confirm that the proposed scheme enhances the accuracy and reliability of privacy-preserving data analysis in cloud environments.展开更多
With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role i...With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role in multiple fields such as communication security,data storage,and data recovery.This article explores the fundamental principles and interrelationships of data encryption and decryption,examines the strengths,weaknesses,and applicability of symmetric,asymmetric,and hybrid encryption algorithms,and introduces key application scenarios for data encryption and decryption technology.It examines the challenges and corresponding countermeasures related to encryption algorithm security,key management,and encryption-decryption performance.Finally,it analyzes the development trends and future prospects of data encryption and decryption technology.This article provides a systematic understanding of data encryption and decryption techniques,which has good reference value for software designers.展开更多
Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive da...Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.展开更多
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica...Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.展开更多
A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built...A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built-in security measures, even though it can effectively handle and store enormous datasets using the Hadoop Distributed File System (HDFS). The increasing number of data breaches emphasizes how urgently creative encryption techniques are needed in cloud-based big data settings. This paper presents Adaptive Attribute-Based Honey Encryption (AABHE), a state-of-the-art technique that combines honey encryption with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to provide improved data security. Even if intercepted, AABHE makes sure that sensitive data cannot be accessed by unauthorized parties. With a focus on protecting huge files in HDFS, the suggested approach achieves 98% security robustness and 95% encryption efficiency, outperforming other encryption methods including Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Key-Policy Attribute-Based Encryption (KB-ABE), and Advanced Encryption Standard combined with Attribute-Based Encryption (AES+ABE). By fixing Hadoop’s security flaws, AABHE fortifies its protections against data breaches and enhances Hadoop’s dependability as a platform for processing and storing massive amounts of data.展开更多
With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasu...With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.展开更多
Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(M...Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(ML)has expanded its applications into intelligent recommendation systems,autonomous driving,medical diagnosis,and financial risk assessment.However,it relies on massive datasets,which contain sensitive personal information.Consequently,Privacy-Preserving Machine Learning(PPML)has become a critical research direction.To address the challenges of efficiency and accuracy in encrypted data computation within PPML,Homomorphic Encryption(HE)technology is a crucial solution,owing to its capability to facilitate computations on encrypted data.However,the integration of machine learning and homomorphic encryption technologies faces multiple challenges.Against this backdrop,this paper reviews homomorphic encryption technologies,with a focus on the advantages of the Cheon-Kim-Kim-Song(CKKS)algorithm in supporting approximate floating-point computations.This paper reviews the development of three machine learning techniques:K-nearest neighbors(KNN),K-means clustering,and face recognition-in integration with homomorphic encryption.It proposes feasible schemes for typical scenarios,summarizes limitations and future optimization directions.Additionally,it presents a systematic exploration of the integration of homomorphic encryption and machine learning from the essence of the technology,application implementation,performance trade-offs,technological convergence and future pathways to advance technological development.展开更多
Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the ...Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln^(3+)ions in alkaline environments.In this paper,we are able to integrate CO_(3)^(2-)and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu_(19)-embedded PONb H_(49)K_(16)Na_(13)(H_(2)O)_(63)[Eu_(21)O_(2)(OH)_(7)(H_(2)O)_(5)(Nb_(7)O_(22))_(10)(Nb_(2)O_(6))_(2)(CO_(3))_(18)]·91H_(2)O(1),which contains the highest nuclearity Eu-O clusters and the largest number of Eu^(3+)ions among PONbs.In addition,the film that was prepared by mixing 1 with gelatin and glycerol,exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach.This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption.展开更多
Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blo...Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.展开更多
Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To ...Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To address these problems,this paper proposes an enhanced Fully Homomorphic Encryption(FHE)algorithm based on an improved DGHV algorithm,coupled with an optimized ciphertext retrieval scheme.Our specific contributions are outlined as follows:First,we employ an authorization code to verify the user’s retrieval authority and perform hierarchical access control on cloud storage data.Second,a triple-key encryption mechanism,which separates the data encryption key,retrieval authorization key,and retrieval key,is designed.Different keys are provided to different entities to run corresponding system functions.The key separation architecture proves particularly advantageous in multi-verifier coexistence scenarios,environments involving untrusted third-party retrieval services.Finally,the enhanced DGHV-based retrieval mechanism extends conventional functionality by enabling multi-keyword queries with similarity-ranked results,thereby significantly improving both the functionality and usability of the FHE system.展开更多
False Data Injection Attack(FDIA),a disruptive cyber threat,is becoming increasingly detrimental to smart grids with the deepening integration of information technology and physical power systems,leading to system unr...False Data Injection Attack(FDIA),a disruptive cyber threat,is becoming increasingly detrimental to smart grids with the deepening integration of information technology and physical power systems,leading to system unreliability,data integrity loss and operational vulnerability exposure.Given its widespread harm and impact,conducting in-depth research on FDIA detection is vitally important.This paper innovatively introduces a FDIA detection scheme:A Protected Federated Deep Learning(ProFed),which leverages Federated Averaging algorithm(FedAvg)as a foundational framework to fortify data security,harnesses pre-trained enhanced spatial-temporal graph neural networks(STGNN)to perform localized model training and integrates the Cheon-Kim-Kim-Song(CKKS)homomorphic encryption system to secure sensitive information.Simulation tests on IEEE 14-bus and IEEE 118-bus systems demonstrate that our proposed method outperforms other state-of-the-art detection methods across all evaluation metrics,with peak improvements reaching up to 35%.展开更多
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P...Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.展开更多
Photoswitchable fluorescent polymeric nanoparticles were widely concerned because of their excellent features including the flexible design,easy preparation and functionalization,and thus exhibited great application p...Photoswitchable fluorescent polymeric nanoparticles were widely concerned because of their excellent features including the flexible design,easy preparation and functionalization,and thus exhibited great application potential in information encryption,anti-counterfeiting,but remained challenging in improving the security.Herein,we described a self-erased time-resolved information encryption via using photoswitchable dual-color fluorescent polymeric nanoparticles(PDFPNs)containing two fluorescence dyes(blue and red)and photochromic spiroxazine derivatives.In view of the different thermo-induced isomerization rates of photochromic spiroxazine derivatives in different flexible substrates,the decoloration rate of PDFPNs can be programmatically tuned by regulating ratio between rigid polymer and flexible polymer.Therefore,after ultraviolet light(UV)irradiation,correct information could only be recognized in preestablished time during the self-erased process.Our results indicated that PDFPNs exhibited fast photo-responsibility(2 min),high fluorescence contrast,well-pleasing photo-reversibility(>20 times),and programmable thermo-responsiveness(24 s-6 h).We thus demonstrated their application in the selferased time-resolved information encryption and anti-counterfeiting with high security.展开更多
Attribute-based encryption(ABE)is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes.ABE is widely applied in cloud storage,file sharing,e-Health,and digita...Attribute-based encryption(ABE)is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes.ABE is widely applied in cloud storage,file sharing,e-Health,and digital rightsmanagement.ABE schemes rely on hard cryptographic assumptions such as pairings and others(pairingfree)to ensure their security against external and internal attacks.Internal attacks are carried out by authorized users who misuse their access to compromise security with potentially malicious intent.One common internal attack is the attribute collusion attack,in which users with different attribute keys collaborate to decrypt data they could not individually access.This paper focuses on the ciphertext-policy ABE(CP-ABE),a type of ABE where ciphertexts are produced with access policies.Our firstwork is to carry out the attribute collusion attack against several existing pairingfree CP-ABE schemes.As a main contribution,we introduce a novel attack,termed the anonymous key-leakage attack,concerning the context in which users could anonymously publish their secret keys associated with certain attributes on public platforms without the risk of detection.This kind of internal attack has not been defined or investigated in the literature.We then show that several prominent pairing-based CP-ABE schemes are vulnerable to this attack.We believe that this work will contribute to helping the community evaluate suitable CP-ABE schemes for secure deployment in real-life applications.展开更多
With the continuous growth of exponential data in IoT,it is usually chosen to outsource data to the cloud server.However,cloud servers are usually provided by third parties,and there is a risk of privacy leakage.Encry...With the continuous growth of exponential data in IoT,it is usually chosen to outsource data to the cloud server.However,cloud servers are usually provided by third parties,and there is a risk of privacy leakage.Encrypting data can ensure its security,but at the same time,it loses the retrieval function of IoT data.Searchable Encryption(SE)can achieve direct retrieval based on ciphertext data.The traditional searchable encryption scheme has the problems of imperfect function,low retrieval efficiency,inaccurate retrieval results,and centralized cloud servers being vulnerable and untrustworthy.This paper proposes an Efficient searchable encryption scheme supporting fuzzy multi-keyword ranking search on the blockchain.The blockchain and IPFS are used to store the index and encrypted files in a distributed manner respectively.The tamper resistance of the distributed ledger ensures the authenticity of the data.The data retrieval work is performed by the smart contract to ensure the reliability of the data retrieval.The Local Sensitive Hash(LSH)function is combined with the Bloom Filter(BF)to realize the fuzzy multi-keyword retrieval function.In addition,to measure the correlation between keywords and files,a new weighted statistical algorithm combining RegionalWeight Score(RWS)and Term Frequency–Inverse Document Frequency(TF-IDF)is proposed to rank the search results.The balanced binary tree is introduced to establish the index structure,and the index binary tree traversal strategy suitable for this scheme is constructed to optimize the index structure and improve the retrieval efficiency.The experimental results show that the scheme is safe and effective in practical applications.展开更多
With the fast development of multimedia social platforms,content dissemination on social media platforms is becomingmore popular.Social image sharing can also raise privacy concerns.Image encryption can protect social...With the fast development of multimedia social platforms,content dissemination on social media platforms is becomingmore popular.Social image sharing can also raise privacy concerns.Image encryption can protect social images.However,most existing image protection methods cannot be applied to multimedia social platforms because of encryption in the spatial domain.In this work,the authors propose a secure social image-sharing method with watermarking/fingerprinting and encryption.First,the fingerprint code with a hierarchical community structure is designed based on social network analysis.Then,discrete wavelet transform(DWT)from block discrete cosine transform(DCT)directly is employed.After that,all codeword segments are embedded into the LL,LH,and HL subbands,respectively.The selected subbands are confused based on Game of Life(GoL),and then all subbands are diffused with singular value decomposition(SVD).Experimental results and security analysis demonstrate the security,invisibility,and robustness of our method.Further,the superiority of the technique is elaborated through comparison with some related image security algorithms.The solution not only performs the fast transformation from block DCT to one-level DWT but also protects users’privacy in multimedia social platforms.With the proposed method,JPEG image secure sharing in multimedia social platforms can be ensured.展开更多
Existing chaotic encryption schemes primarily focus on single types of images,making the design of hybrid image encryption schemes more suitable for practical applications.In this paper,a hyperchaotic map with a spher...Existing chaotic encryption schemes primarily focus on single types of images,making the design of hybrid image encryption schemes more suitable for practical applications.In this paper,a hyperchaotic map with a spherical attractor is proposed,which is constructed using spherical coordinates.Dynamical analyses reveal that the hyperchaotic map exhibits global hyperchaos and high complexity,making it capable of generating more complex chaotic sequences suitable for image encryption.A hybrid encryption scheme based on a hyperchaotic map is proposed for two-dimensional(2D)images,three-dimensional(3D)models,and 3D point clouds.Firstly,the pixels of 2D image and the coordinate data of 3D image are fused into a plaintext cube,which is combined with Hash-512 to obtain the initial value of the hyperchaotic map.Chaotic sequences are utilized for cube space internal confusion and dynamic cross-diffusion.The encrypted images demonstrate high information entropy,and the test results show that the encryption scheme effectively protects the images.The proposed hybrid image encryption scheme provides an efficient solution for securing various types of images.展开更多
文摘A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.
基金National Key Research and Development Program of China(2021YFB3101402)National Natural Science Foundation of China(62202294)。
文摘This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.
基金Türkiye Bilimsel ve Teknolojik Arastırma Kurumu。
文摘This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevalent,secure and efficient data transmission becomes crucial.The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption.Traditional image encryption relies on confusion and diffusion steps.These stages are generally implemented linearly,but this work introduces a new RSP(Random Strip Peeling)algorithm for the confusion step,which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions.The diffusion stage then employs an XOR matrix generated by the Logistic Map.Different evaluation metrics,such as entropy analysis,key sensitivity,statistical and differential attacks resistance,and robustness analysis demonstrate the proposed algorithm's lightweight,robust,and efficient.The proposed encryption scheme achieved average metric values of 99.6056 for NPCR,33.4397 for UACI,and 7.9914 for information entropy in the SIPI image dataset.It also exhibits a time complexity of O(2×M×N)for an image of size M×N.
基金funded by National Science and Technology Council,Taiwan,grant numbers are 110-2401-H-002-094-MY2 and 112-2221-E-130-001.
文摘As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be transmitted to and processed by untrusted parties.To address this,fully homomorphic encryption(FHE)has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service(MLaaS),enabling computation on encrypted data without revealing the plaintext.Nevertheless,FHE remains computationally expensive.As a result,approximate homomorphic encryption(AHE)schemes,such as CKKS,have attracted attention due to their efficiency.In our previous work,we proposed RP-OKC,a CKKS-based clustering scheme implemented via TenSEAL.However,errors inherent to CKKS operations—termed CKKS-errors—can affect the accuracy of the result after decryption.Since these errors can be mitigated through post-decryption rounding,we propose a data pre-scaling technique to increase the number of significant digits and reduce CKKS-errors.Furthermore,we introduce an Operation-Error-Estimation(OEE)table that quantifies upper-bound error estimates for various CKKS operations.This table enables error-aware decryption correction,ensuring alignment between encrypted and plaintext results.We validate our method on K-means clustering using the Kaggle Customer Segmentation dataset.Experimental results confirm that the proposed scheme enhances the accuracy and reliability of privacy-preserving data analysis in cloud environments.
文摘With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role in multiple fields such as communication security,data storage,and data recovery.This article explores the fundamental principles and interrelationships of data encryption and decryption,examines the strengths,weaknesses,and applicability of symmetric,asymmetric,and hybrid encryption algorithms,and introduces key application scenarios for data encryption and decryption technology.It examines the challenges and corresponding countermeasures related to encryption algorithm security,key management,and encryption-decryption performance.Finally,it analyzes the development trends and future prospects of data encryption and decryption technology.This article provides a systematic understanding of data encryption and decryption techniques,which has good reference value for software designers.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.
基金funded by Deanship of Research and Graduate Studies at King Khalid University.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/556/45).
文摘Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.
基金funded by Princess Nourah bint Abdulrahman UniversityResearchers Supporting Project number (PNURSP2024R408), Princess Nourah bint AbdulrahmanUniversity, Riyadh, Saudi Arabia.
文摘A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built-in security measures, even though it can effectively handle and store enormous datasets using the Hadoop Distributed File System (HDFS). The increasing number of data breaches emphasizes how urgently creative encryption techniques are needed in cloud-based big data settings. This paper presents Adaptive Attribute-Based Honey Encryption (AABHE), a state-of-the-art technique that combines honey encryption with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to provide improved data security. Even if intercepted, AABHE makes sure that sensitive data cannot be accessed by unauthorized parties. With a focus on protecting huge files in HDFS, the suggested approach achieves 98% security robustness and 95% encryption efficiency, outperforming other encryption methods including Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Key-Policy Attribute-Based Encryption (KB-ABE), and Advanced Encryption Standard combined with Attribute-Based Encryption (AES+ABE). By fixing Hadoop’s security flaws, AABHE fortifies its protections against data breaches and enhances Hadoop’s dependability as a platform for processing and storing massive amounts of data.
基金financial supports from National Key Research and Development Program of China(No.2022YFB3806200)。
文摘With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.
基金supported by the fllowing projects:Natural Science Foundation of China under Grant 62172436Self-Initiated Scientific Research Project of the Chinese People's Armed Police Force under Grant ZZKY20243129Basic Frontier Innovation Project of the Engineering University of the Chinese People's Armed Police Force under Grant WJY202421.
文摘Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(ML)has expanded its applications into intelligent recommendation systems,autonomous driving,medical diagnosis,and financial risk assessment.However,it relies on massive datasets,which contain sensitive personal information.Consequently,Privacy-Preserving Machine Learning(PPML)has become a critical research direction.To address the challenges of efficiency and accuracy in encrypted data computation within PPML,Homomorphic Encryption(HE)technology is a crucial solution,owing to its capability to facilitate computations on encrypted data.However,the integration of machine learning and homomorphic encryption technologies faces multiple challenges.Against this backdrop,this paper reviews homomorphic encryption technologies,with a focus on the advantages of the Cheon-Kim-Kim-Song(CKKS)algorithm in supporting approximate floating-point computations.This paper reviews the development of three machine learning techniques:K-nearest neighbors(KNN),K-means clustering,and face recognition-in integration with homomorphic encryption.It proposes feasible schemes for typical scenarios,summarizes limitations and future optimization directions.Additionally,it presents a systematic exploration of the integration of homomorphic encryption and machine learning from the essence of the technology,application implementation,performance trade-offs,technological convergence and future pathways to advance technological development.
基金the financial support from the National Natural Science Foundation of China(Nos.21971040,22171045,and 22371046)。
文摘Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln^(3+)ions in alkaline environments.In this paper,we are able to integrate CO_(3)^(2-)and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu_(19)-embedded PONb H_(49)K_(16)Na_(13)(H_(2)O)_(63)[Eu_(21)O_(2)(OH)_(7)(H_(2)O)_(5)(Nb_(7)O_(22))_(10)(Nb_(2)O_(6))_(2)(CO_(3))_(18)]·91H_(2)O(1),which contains the highest nuclearity Eu-O clusters and the largest number of Eu^(3+)ions among PONbs.In addition,the film that was prepared by mixing 1 with gelatin and glycerol,exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach.This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption.
基金supported by the Large Group Project under grant number(RGP2/473/46).
文摘Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.
基金supported by the Innovation Program for Quantum Science and technology(2021ZD0301300)supported by the Fundamental Research Funds for the Central Universities(Nos.3282024046,3282024052,3282024058,3282023017).
文摘Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To address these problems,this paper proposes an enhanced Fully Homomorphic Encryption(FHE)algorithm based on an improved DGHV algorithm,coupled with an optimized ciphertext retrieval scheme.Our specific contributions are outlined as follows:First,we employ an authorization code to verify the user’s retrieval authority and perform hierarchical access control on cloud storage data.Second,a triple-key encryption mechanism,which separates the data encryption key,retrieval authorization key,and retrieval key,is designed.Different keys are provided to different entities to run corresponding system functions.The key separation architecture proves particularly advantageous in multi-verifier coexistence scenarios,environments involving untrusted third-party retrieval services.Finally,the enhanced DGHV-based retrieval mechanism extends conventional functionality by enabling multi-keyword queries with similarity-ranked results,thereby significantly improving both the functionality and usability of the FHE system.
基金supported in part by the Sichuan Science and Technology Program(2024YFHZ0015)the Key Laboratory of Data Protection and Intelligent Management,Ministry of Education,Sichuan University(SCUSACXYD202401).
文摘False Data Injection Attack(FDIA),a disruptive cyber threat,is becoming increasingly detrimental to smart grids with the deepening integration of information technology and physical power systems,leading to system unreliability,data integrity loss and operational vulnerability exposure.Given its widespread harm and impact,conducting in-depth research on FDIA detection is vitally important.This paper innovatively introduces a FDIA detection scheme:A Protected Federated Deep Learning(ProFed),which leverages Federated Averaging algorithm(FedAvg)as a foundational framework to fortify data security,harnesses pre-trained enhanced spatial-temporal graph neural networks(STGNN)to perform localized model training and integrates the Cheon-Kim-Kim-Song(CKKS)homomorphic encryption system to secure sensitive information.Simulation tests on IEEE 14-bus and IEEE 118-bus systems demonstrate that our proposed method outperforms other state-of-the-art detection methods across all evaluation metrics,with peak improvements reaching up to 35%.
基金supported by Natural Science Foundation of China(Nos.62303126,62362008,author Z.Z,https://www.nsfc.gov.cn/,accessed on 20 December 2024)Major Scientific and Technological Special Project of Guizhou Province([2024]014)+2 种基金Guizhou Provincial Science and Technology Projects(No.ZK[2022]General149) ,author Z.Z,https://kjt.guizhou.gov.cn/,accessed on 20 December 2024)The Open Project of the Key Laboratory of Computing Power Network and Information Security,Ministry of Education under Grant 2023ZD037,author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2024B25),author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024).
文摘Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.
基金financially supported by the National Key R&D Program of China(Nos.2023YFB3812400,2023YFB3812403)National Natural Foundation of China(Nos.52273206,52350233)+1 种基金Hunan Provincial Natural Science Foundation(No.2021JJ10029)Huxiang High-level Talent Gathering Project(No.2022RC4039).
文摘Photoswitchable fluorescent polymeric nanoparticles were widely concerned because of their excellent features including the flexible design,easy preparation and functionalization,and thus exhibited great application potential in information encryption,anti-counterfeiting,but remained challenging in improving the security.Herein,we described a self-erased time-resolved information encryption via using photoswitchable dual-color fluorescent polymeric nanoparticles(PDFPNs)containing two fluorescence dyes(blue and red)and photochromic spiroxazine derivatives.In view of the different thermo-induced isomerization rates of photochromic spiroxazine derivatives in different flexible substrates,the decoloration rate of PDFPNs can be programmatically tuned by regulating ratio between rigid polymer and flexible polymer.Therefore,after ultraviolet light(UV)irradiation,correct information could only be recognized in preestablished time during the self-erased process.Our results indicated that PDFPNs exhibited fast photo-responsibility(2 min),high fluorescence contrast,well-pleasing photo-reversibility(>20 times),and programmable thermo-responsiveness(24 s-6 h).We thus demonstrated their application in the selferased time-resolved information encryption and anti-counterfeiting with high security.
文摘Attribute-based encryption(ABE)is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes.ABE is widely applied in cloud storage,file sharing,e-Health,and digital rightsmanagement.ABE schemes rely on hard cryptographic assumptions such as pairings and others(pairingfree)to ensure their security against external and internal attacks.Internal attacks are carried out by authorized users who misuse their access to compromise security with potentially malicious intent.One common internal attack is the attribute collusion attack,in which users with different attribute keys collaborate to decrypt data they could not individually access.This paper focuses on the ciphertext-policy ABE(CP-ABE),a type of ABE where ciphertexts are produced with access policies.Our firstwork is to carry out the attribute collusion attack against several existing pairingfree CP-ABE schemes.As a main contribution,we introduce a novel attack,termed the anonymous key-leakage attack,concerning the context in which users could anonymously publish their secret keys associated with certain attributes on public platforms without the risk of detection.This kind of internal attack has not been defined or investigated in the literature.We then show that several prominent pairing-based CP-ABE schemes are vulnerable to this attack.We believe that this work will contribute to helping the community evaluate suitable CP-ABE schemes for secure deployment in real-life applications.
基金funded by the Jilin Provincial Department of Education Scientific Research Project(Project No.JJKH20250872KJ).
文摘With the continuous growth of exponential data in IoT,it is usually chosen to outsource data to the cloud server.However,cloud servers are usually provided by third parties,and there is a risk of privacy leakage.Encrypting data can ensure its security,but at the same time,it loses the retrieval function of IoT data.Searchable Encryption(SE)can achieve direct retrieval based on ciphertext data.The traditional searchable encryption scheme has the problems of imperfect function,low retrieval efficiency,inaccurate retrieval results,and centralized cloud servers being vulnerable and untrustworthy.This paper proposes an Efficient searchable encryption scheme supporting fuzzy multi-keyword ranking search on the blockchain.The blockchain and IPFS are used to store the index and encrypted files in a distributed manner respectively.The tamper resistance of the distributed ledger ensures the authenticity of the data.The data retrieval work is performed by the smart contract to ensure the reliability of the data retrieval.The Local Sensitive Hash(LSH)function is combined with the Bloom Filter(BF)to realize the fuzzy multi-keyword retrieval function.In addition,to measure the correlation between keywords and files,a new weighted statistical algorithm combining RegionalWeight Score(RWS)and Term Frequency–Inverse Document Frequency(TF-IDF)is proposed to rank the search results.The balanced binary tree is introduced to establish the index structure,and the index binary tree traversal strategy suitable for this scheme is constructed to optimize the index structure and improve the retrieval efficiency.The experimental results show that the scheme is safe and effective in practical applications.
基金funded by NSFC Grants 61502154,61972136,the NSF of Hubei Province(2023AFB004,2024AFB544)Hubei Provincial Department of Education Project(No.Q20232206)Project of Hubei University of Economics(No.T201410).
文摘With the fast development of multimedia social platforms,content dissemination on social media platforms is becomingmore popular.Social image sharing can also raise privacy concerns.Image encryption can protect social images.However,most existing image protection methods cannot be applied to multimedia social platforms because of encryption in the spatial domain.In this work,the authors propose a secure social image-sharing method with watermarking/fingerprinting and encryption.First,the fingerprint code with a hierarchical community structure is designed based on social network analysis.Then,discrete wavelet transform(DWT)from block discrete cosine transform(DCT)directly is employed.After that,all codeword segments are embedded into the LL,LH,and HL subbands,respectively.The selected subbands are confused based on Game of Life(GoL),and then all subbands are diffused with singular value decomposition(SVD).Experimental results and security analysis demonstrate the security,invisibility,and robustness of our method.Further,the superiority of the technique is elaborated through comparison with some related image security algorithms.The solution not only performs the fast transformation from block DCT to one-level DWT but also protects users’privacy in multimedia social platforms.With the proposed method,JPEG image secure sharing in multimedia social platforms can be ensured.
基金Project supported by the Basic Scientific Research Projects of Department of Education of Liaoning Province,China(Grant No.LJ212410152049)the Technological Innovation Projects in the field of artificial intelligence of Liaoning Province,China(Grant No.2023JH26/10300011)。
文摘Existing chaotic encryption schemes primarily focus on single types of images,making the design of hybrid image encryption schemes more suitable for practical applications.In this paper,a hyperchaotic map with a spherical attractor is proposed,which is constructed using spherical coordinates.Dynamical analyses reveal that the hyperchaotic map exhibits global hyperchaos and high complexity,making it capable of generating more complex chaotic sequences suitable for image encryption.A hybrid encryption scheme based on a hyperchaotic map is proposed for two-dimensional(2D)images,three-dimensional(3D)models,and 3D point clouds.Firstly,the pixels of 2D image and the coordinate data of 3D image are fused into a plaintext cube,which is combined with Hash-512 to obtain the initial value of the hyperchaotic map.Chaotic sequences are utilized for cube space internal confusion and dynamic cross-diffusion.The encrypted images demonstrate high information entropy,and the test results show that the encryption scheme effectively protects the images.The proposed hybrid image encryption scheme provides an efficient solution for securing various types of images.