A minimal generalized time-bandwidth product-based coarse-to-fine strategy is proposed with one novel ideas highlighted: adopting a coarse-to-fine strategy to speed up the searching process. The simulation results on ...A minimal generalized time-bandwidth product-based coarse-to-fine strategy is proposed with one novel ideas highlighted: adopting a coarse-to-fine strategy to speed up the searching process. The simulation results on synthetic and real signals show the validity of the proposed method.展开更多
To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth p...To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth product linear frequency modulating ( LFM ) signal ( i. e. chirp ) is proposed in this paper. The wideband chirp signal is split up into several compressed subpulses. Then the fast Fourier transform (FFT) is used to reconstruct the high resolution range profile ( HR- RP) in a relative short computation time. For multi-frame, pulse Doppler (PD) process is performed to obtain the two-dimension range-Doppler (R-D) high resolution profile. Simulations and field ex- perimental results show that the proposed method can provide high-quality target profile over a large range window in a short computation time and has the promising potential for long-time coherent in- tegration.展开更多
<div style="text-align:justify;"> A photonics approach to generate a linearly chirped waveform with increased TBWP is proposed and investigated. The time bandwidth product (TBWP) of the linearly chirpe...<div style="text-align:justify;"> A photonics approach to generate a linearly chirped waveform with increased TBWP is proposed and investigated. The time bandwidth product (TBWP) of the linearly chirped waveform is improved based on optical microwave frequency multiplying combined with temporal synthesis. An integrated dual-polarization modulator and an optical filter are utilized to perform frequency doubling operation by generating an orthogonally polarized optical signal, which consists of an optical carrier in one polarization direction and a second-order chirped optical sideband in another. Then the orthogonally polarized optical signal puts into a polarization modulator (PolM) to perform phase coding process. By driving a Pseudorandom (PN) sequence to the PolM, the time duration of the generated bandwidth doubled linearly chirped waveform can be synthesized to arbitrary length. The approach is verified by simulation. A linearly chirped waveform with central frequency of 8.25 GHz, bandwidth of 500 MHz, time duration of 6.4 ns is used to generate a synthesized waveform with central frequency of 16.5 GHz, bandwidth of 1 GHz, time duration of 819.2 ns. The TBWP of the linearly chirped signal is improved from 3.2 to 819.2. The proposed method features arbitrary large TBWP, and it can be used in a radar system to improve its resolution. </div>展开更多
为更好地使URLLC(Ultra-Reliable and Low Latency Communications)与增强型移动宽带业务(eMBB:enhanced Mobile Broad Band)在同一载波频段有效复用,进一步提升混合业务系统性能,提出一种基于可扩展传输时间间隔(TTI:Transmission Time...为更好地使URLLC(Ultra-Reliable and Low Latency Communications)与增强型移动宽带业务(eMBB:enhanced Mobile Broad Band)在同一载波频段有效复用,进一步提升混合业务系统性能,提出一种基于可扩展传输时间间隔(TTI:Transmission Time Interval)的动态带宽分配策略。系统根据业务类型进行带宽动态划分;时域上提升URLLC调度优先级;频域上采用不同长度的TTI进行以用户为中心的无线资源分配。动态系统级仿真表明,在不同程度的负载水平下,相比传统无线资源分配算法,该方案能在有效满足URLLC用户时延需求的前提下优化eMBB用户的吞吐量消耗,URLLC用户时延增益最高达到83.8%,提升了5G混合业务系统中不同类型业务的服务质量(QoS:Quality of Service)。展开更多
文摘A minimal generalized time-bandwidth product-based coarse-to-fine strategy is proposed with one novel ideas highlighted: adopting a coarse-to-fine strategy to speed up the searching process. The simulation results on synthetic and real signals show the validity of the proposed method.
基金Supported by the National Natural Science Foundation of China(61301189)
文摘To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth product linear frequency modulating ( LFM ) signal ( i. e. chirp ) is proposed in this paper. The wideband chirp signal is split up into several compressed subpulses. Then the fast Fourier transform (FFT) is used to reconstruct the high resolution range profile ( HR- RP) in a relative short computation time. For multi-frame, pulse Doppler (PD) process is performed to obtain the two-dimension range-Doppler (R-D) high resolution profile. Simulations and field ex- perimental results show that the proposed method can provide high-quality target profile over a large range window in a short computation time and has the promising potential for long-time coherent in- tegration.
文摘<div style="text-align:justify;"> A photonics approach to generate a linearly chirped waveform with increased TBWP is proposed and investigated. The time bandwidth product (TBWP) of the linearly chirped waveform is improved based on optical microwave frequency multiplying combined with temporal synthesis. An integrated dual-polarization modulator and an optical filter are utilized to perform frequency doubling operation by generating an orthogonally polarized optical signal, which consists of an optical carrier in one polarization direction and a second-order chirped optical sideband in another. Then the orthogonally polarized optical signal puts into a polarization modulator (PolM) to perform phase coding process. By driving a Pseudorandom (PN) sequence to the PolM, the time duration of the generated bandwidth doubled linearly chirped waveform can be synthesized to arbitrary length. The approach is verified by simulation. A linearly chirped waveform with central frequency of 8.25 GHz, bandwidth of 500 MHz, time duration of 6.4 ns is used to generate a synthesized waveform with central frequency of 16.5 GHz, bandwidth of 1 GHz, time duration of 819.2 ns. The TBWP of the linearly chirped signal is improved from 3.2 to 819.2. The proposed method features arbitrary large TBWP, and it can be used in a radar system to improve its resolution. </div>
文摘为更好地使URLLC(Ultra-Reliable and Low Latency Communications)与增强型移动宽带业务(eMBB:enhanced Mobile Broad Band)在同一载波频段有效复用,进一步提升混合业务系统性能,提出一种基于可扩展传输时间间隔(TTI:Transmission Time Interval)的动态带宽分配策略。系统根据业务类型进行带宽动态划分;时域上提升URLLC调度优先级;频域上采用不同长度的TTI进行以用户为中心的无线资源分配。动态系统级仿真表明,在不同程度的负载水平下,相比传统无线资源分配算法,该方案能在有效满足URLLC用户时延需求的前提下优化eMBB用户的吞吐量消耗,URLLC用户时延增益最高达到83.8%,提升了5G混合业务系统中不同类型业务的服务质量(QoS:Quality of Service)。