Just-in-time(JIT)part feeding is adopted by more and more automobile producers.Based on this part feeding policy,vehicles perform their assigned routes cyclically and provide stations with the exact quantity of parts ...Just-in-time(JIT)part feeding is adopted by more and more automobile producers.Based on this part feeding policy,vehicles perform their assigned routes cyclically and provide stations with the exact quantity of parts required until the next arrival of the vehicle.However,if there are uncertain travel times,a shortage of materials in stations will be caused.In this paper,the JIT part feeding optimization problem under travel time uncertainty is studied.The uncertain travel time is represented by the interval number according to the actual situation.To minimize the largest possible vehicle trip time,the optimization model is developed based on robust optimization.In the model,a route-dependent uncertain parameter is introduced.Through this model,the route of each vehicle and the parts load needed to be delivered by the vehicle can be calculated.A hybrid simulated annealing algorithm is designed to solve this model.The parts feeding planning for an engine assembly line is taken as an example.By the Monte Carlo simulation,the relationship between the line stoppage probability and the uncertain parameter is studied to obtain the final solution.The effectiveness of the method is demonstrated by this case study.展开更多
An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the...An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the strength of the electric field associated with an elementary emission process of energy. In the next step, the uncertainty principle is applied to both the emission time and energy. The theoretical result for e is roughly close to the experimental value of the electron charge.展开更多
The effectiveness of evaluating an investment project based on predicting cash flows depends on the uncertainty of its future cash flows. The remoter the cash flows are, the higher the uncertainty is. Because of this,...The effectiveness of evaluating an investment project based on predicting cash flows depends on the uncertainty of its future cash flows. The remoter the cash flows are, the higher the uncertainty is. Because of this, this paper suggests to discount cash flows by applying risky index of time (RIT). Thus, the discount rate used to discount the distant cash flows is higher that the discount rate used to discount the near cash flows. By this systematic method, the risk caused by the uncertainty of future cash flows can be hedged in making investment decision. To a certain degree, this approach is reasonable in evaluating investment alternatives under uncertainty. Furthermore, the paper puts forward a practical approach on determining RIT in practice.展开更多
A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that proces...A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.展开更多
The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state ...The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.展开更多
Compared with full device-independent quantum key distribution(DI-QKD), one-side device-independent QKD(1s DI-QKD) needs fewer requirements, which is much easier to meet. In this paper, by applying recently develo...Compared with full device-independent quantum key distribution(DI-QKD), one-side device-independent QKD(1s DI-QKD) needs fewer requirements, which is much easier to meet. In this paper, by applying recently developed novel time–energy entropic uncertainty relations, we present a time–energy high-dimensional one-side device-independent quantum key distribution(HD-QKD) and provide the security proof against coherent attacks. Besides, we connect the security with the quantum steering. By numerical simulation, we obtain the secret key rate for Alice's different detection efficiencies. The results show that our protocol can performance much better than the original 1s DI-QKD. Furthermore, we clarify the relation among the secret key rate, Alice's detection efficiency, and the dispersion coefficient. Finally, we simply analyze its performance in the optical fiber channel.展开更多
Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4?C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse...Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4?C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse gas concentration scenario. Results show that, according to the 39 models, the median year in which 4?C global warming will occur is 2084.Based on the median results of models that project a 4?C global warming by 2100, land areas will generally exhibit stronger warming than the oceans annually and seasonally, and the strongest enhancement occurs in the Arctic, with the exception of the summer season. Change signals for temperature go outside its natural internal variabilities globally, and the signal-tonoise ratio averages 9.6 for the annual mean and ranges from 6.3 to 7.2 for the seasonal mean over the globe, with the greatest values appearing at low latitudes because of low noise. Decreased precipitation generally occurs in the subtropics, whilst increased precipitation mainly appears at high latitudes. The precipitation changes in most of the high latitudes are greater than the background variability, and the global mean signal-to-noise ratio is 0.5 and ranges from 0.2 to 0.4 for the annual and seasonal means, respectively. Attention should be paid to limiting global warming to 1.5?C, in which case temperature and precipitation will experience a far more moderate change than the natural internal variability. Large inter-model disagreement appears at high latitudes for temperature changes and at mid and low latitudes for precipitation changes. Overall, the intermodel consistency is better for temperature than for precipitation.展开更多
This paper studied a tactical liner shipping schedule design issue under sail and port time uncertainties,which is the determination of the planned arrival time at each port call as well as the punctuality rate and nu...This paper studied a tactical liner shipping schedule design issue under sail and port time uncertainties,which is the determination of the planned arrival time at each port call as well as the punctuality rate and number of assigned ship on the route.A number of studies have tried to introduce the operational speed adjustment measure into this tactical schedule design issue,to alleviate the discrepancies between designed schedule and maritime practice.On the one hand,weather conditions can lead to speed loss phenomenon of ships,which may result in the failure of ships’punctual arrivals.On the other hand,improving the ability of speed adjustment can decrease the late-arrival compensation,but increase the fuel consumption cost.Then,we formulated a machine learning-based liner shipping schedule design model aiming at above-mentioned two limitations on speed adjustment measure.And a machine learning-based approach has been designed,where the speed adjustment simulation,the neural network training and the reinforcement learning were included.Numerical experiments were conducted to validate our results and derive managerial insights,and then the applicability of machine learning method in shipping optimization issue has been confirmed.展开更多
Quantum aspects of the Joule-Lenz law for the dissipation energy have been studied. In the first step, in an analysis of the energy-time principle of uncertainty, this gives a lower limit of the time interval and an u...Quantum aspects of the Joule-Lenz law for the dissipation energy have been studied. In the first step, in an analysis of the energy-time principle of uncertainty, this gives a lower limit of the time interval and an upper limit of the energy interval which can be admitted in a quantum transition process. Moreover, for the low energy excitations, the transition time between the levels is found to be close to the oscillation time periods characteristic for these levels. A reference obtained among the transition time Δt, transition energy ΔE and the Planck constant h indicates that Δt should approach approximately the time period of the electromagnetic wave produced in course of the transition.展开更多
Frequency is an important indicator for the oper-ation of microgrids.However,the randomness and uncertainty of renewable energy and load variability may lead to frequency undulation.So,a robust load frequency control(...Frequency is an important indicator for the oper-ation of microgrids.However,the randomness and uncertainty of renewable energy and load variability may lead to frequency undulation.So,a robust load frequency control(LFC)is pro-posed for isolated wind-diesel microgrids considering time delay and parameter uncertainty.The control strategy can suppress frequency fuctuation and optimize frequency dynamic response.First,the double compensation loop,including feedforward control and integral sliding mode control(SMC),is devised to provide anti-disturbance compensation for the diesel generator system and ameliorate the frequency stability of independent microgrids.Secondly,a dynamic fuzzy controller,composed of wind speed and load demand,is designed to provide real-time response reference power for doubly fed induction generator systems(DFIGs),which can promote the effective participation of a wind turbine system for frequency regulation.Then,the proportional differential(PD)parameters of a dynamic fuzzy controller and the frequency adjustment compensation of DFIGs can be obtained by using a particle swarm optimization(PSO)algorithm.Thirdly,load demand is an important index of the robust dynamic load frequency control method;the radial basis function(RBF)neural network observer(NNO)based on the LFC model is presented to obtain more accurate load deviations and improve the control precision of LFC.The performance of the proposed LFC method is tested under different operation cases.Index Terms-Load frequency control,microgrid,neural network observer,sliding mode,time delay and parameter uncertainty.展开更多
基金This research received no external funding.This research is supported by the National Key Research and Development Program of China(Grant No.2017YFB1301600)。
文摘Just-in-time(JIT)part feeding is adopted by more and more automobile producers.Based on this part feeding policy,vehicles perform their assigned routes cyclically and provide stations with the exact quantity of parts required until the next arrival of the vehicle.However,if there are uncertain travel times,a shortage of materials in stations will be caused.In this paper,the JIT part feeding optimization problem under travel time uncertainty is studied.The uncertain travel time is represented by the interval number according to the actual situation.To minimize the largest possible vehicle trip time,the optimization model is developed based on robust optimization.In the model,a route-dependent uncertain parameter is introduced.Through this model,the route of each vehicle and the parts load needed to be delivered by the vehicle can be calculated.A hybrid simulated annealing algorithm is designed to solve this model.The parts feeding planning for an engine assembly line is taken as an example.By the Monte Carlo simulation,the relationship between the line stoppage probability and the uncertain parameter is studied to obtain the final solution.The effectiveness of the method is demonstrated by this case study.
文摘An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the strength of the electric field associated with an elementary emission process of energy. In the next step, the uncertainty principle is applied to both the emission time and energy. The theoretical result for e is roughly close to the experimental value of the electron charge.
文摘The effectiveness of evaluating an investment project based on predicting cash flows depends on the uncertainty of its future cash flows. The remoter the cash flows are, the higher the uncertainty is. Because of this, this paper suggests to discount cash flows by applying risky index of time (RIT). Thus, the discount rate used to discount the distant cash flows is higher that the discount rate used to discount the near cash flows. By this systematic method, the risk caused by the uncertainty of future cash flows can be hedged in making investment decision. To a certain degree, this approach is reasonable in evaluating investment alternatives under uncertainty. Furthermore, the paper puts forward a practical approach on determining RIT in practice.
文摘A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.
文摘The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grants Nos.11304397 and 61505261)
文摘Compared with full device-independent quantum key distribution(DI-QKD), one-side device-independent QKD(1s DI-QKD) needs fewer requirements, which is much easier to meet. In this paper, by applying recently developed novel time–energy entropic uncertainty relations, we present a time–energy high-dimensional one-side device-independent quantum key distribution(HD-QKD) and provide the security proof against coherent attacks. Besides, we connect the security with the quantum steering. By numerical simulation, we obtain the secret key rate for Alice's different detection efficiencies. The results show that our protocol can performance much better than the original 1s DI-QKD. Furthermore, we clarify the relation among the secret key rate, Alice's detection efficiency, and the dispersion coefficient. Finally, we simply analyze its performance in the optical fiber channel.
基金supported by the National Basic Research Program of China (Grant No. 2016YFA0602401)the National Natural Science Foundation of China (Grant No. 41421004)
文摘Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4?C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse gas concentration scenario. Results show that, according to the 39 models, the median year in which 4?C global warming will occur is 2084.Based on the median results of models that project a 4?C global warming by 2100, land areas will generally exhibit stronger warming than the oceans annually and seasonally, and the strongest enhancement occurs in the Arctic, with the exception of the summer season. Change signals for temperature go outside its natural internal variabilities globally, and the signal-tonoise ratio averages 9.6 for the annual mean and ranges from 6.3 to 7.2 for the seasonal mean over the globe, with the greatest values appearing at low latitudes because of low noise. Decreased precipitation generally occurs in the subtropics, whilst increased precipitation mainly appears at high latitudes. The precipitation changes in most of the high latitudes are greater than the background variability, and the global mean signal-to-noise ratio is 0.5 and ranges from 0.2 to 0.4 for the annual and seasonal means, respectively. Attention should be paid to limiting global warming to 1.5?C, in which case temperature and precipitation will experience a far more moderate change than the natural internal variability. Large inter-model disagreement appears at high latitudes for temperature changes and at mid and low latitudes for precipitation changes. Overall, the intermodel consistency is better for temperature than for precipitation.
基金the National Natural Science Foundation of China(Nos.71572022 and 61473053)the National Social Science Foundation of China(No.18VHQ005)。
文摘This paper studied a tactical liner shipping schedule design issue under sail and port time uncertainties,which is the determination of the planned arrival time at each port call as well as the punctuality rate and number of assigned ship on the route.A number of studies have tried to introduce the operational speed adjustment measure into this tactical schedule design issue,to alleviate the discrepancies between designed schedule and maritime practice.On the one hand,weather conditions can lead to speed loss phenomenon of ships,which may result in the failure of ships’punctual arrivals.On the other hand,improving the ability of speed adjustment can decrease the late-arrival compensation,but increase the fuel consumption cost.Then,we formulated a machine learning-based liner shipping schedule design model aiming at above-mentioned two limitations on speed adjustment measure.And a machine learning-based approach has been designed,where the speed adjustment simulation,the neural network training and the reinforcement learning were included.Numerical experiments were conducted to validate our results and derive managerial insights,and then the applicability of machine learning method in shipping optimization issue has been confirmed.
文摘Quantum aspects of the Joule-Lenz law for the dissipation energy have been studied. In the first step, in an analysis of the energy-time principle of uncertainty, this gives a lower limit of the time interval and an upper limit of the energy interval which can be admitted in a quantum transition process. Moreover, for the low energy excitations, the transition time between the levels is found to be close to the oscillation time periods characteristic for these levels. A reference obtained among the transition time Δt, transition energy ΔE and the Planck constant h indicates that Δt should approach approximately the time period of the electromagnetic wave produced in course of the transition.
基金supported in the National Key Research and Development of China(No.2018YFB1503001)Shanghai Municipal Natural Science Foundation(No.22ZR1425500).
文摘Frequency is an important indicator for the oper-ation of microgrids.However,the randomness and uncertainty of renewable energy and load variability may lead to frequency undulation.So,a robust load frequency control(LFC)is pro-posed for isolated wind-diesel microgrids considering time delay and parameter uncertainty.The control strategy can suppress frequency fuctuation and optimize frequency dynamic response.First,the double compensation loop,including feedforward control and integral sliding mode control(SMC),is devised to provide anti-disturbance compensation for the diesel generator system and ameliorate the frequency stability of independent microgrids.Secondly,a dynamic fuzzy controller,composed of wind speed and load demand,is designed to provide real-time response reference power for doubly fed induction generator systems(DFIGs),which can promote the effective participation of a wind turbine system for frequency regulation.Then,the proportional differential(PD)parameters of a dynamic fuzzy controller and the frequency adjustment compensation of DFIGs can be obtained by using a particle swarm optimization(PSO)algorithm.Thirdly,load demand is an important index of the robust dynamic load frequency control method;the radial basis function(RBF)neural network observer(NNO)based on the LFC model is presented to obtain more accurate load deviations and improve the control precision of LFC.The performance of the proposed LFC method is tested under different operation cases.Index Terms-Load frequency control,microgrid,neural network observer,sliding mode,time delay and parameter uncertainty.