This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different...This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.展开更多
Time synchronization is a critical middleware service of wireless sensor networks. Researchers have already proposed some time synchronization algorithms. However, due to the demands for various synchronization precis...Time synchronization is a critical middleware service of wireless sensor networks. Researchers have already proposed some time synchronization algorithms. However, due to the demands for various synchronization precision, existing time synchronization algorithms often need to be adapted. So it is necessary to evaluate these adapted algorithms before use. Software simulation is a valid and quick way to do it. In this paper, we present a time synchronization simulator, Simsync, for wireless sensor networks. We decompose the packet delay into 6 delay components and model them separately. The frequency of crystal oscillator is modeled as Gaussian. To testify its effectiveness, we simulate the reference broadcast synchronization algorithm (RBS) and the timing-sync synchronization algorithm (TPSN) on Simsync. Simulated results are also presented and analyzed.展开更多
To cope with the arbitrariness of the network delays,a novel method,referred to as the composite particle filter approach based on variational Bayesian(VB-CPF),is proposed herein to estimate the clock skew and clock o...To cope with the arbitrariness of the network delays,a novel method,referred to as the composite particle filter approach based on variational Bayesian(VB-CPF),is proposed herein to estimate the clock skew and clock offset in wireless sensor networks.VB-CPF is an improvement of the Gaussian mixture kalman particle filter(GMKPF)algorithm.In GMKPF,Expectation-Maximization(EM)algorithm needs to determine the number of mixture components in advance,and it is easy to generate overfitting and underfitting.Variational Bayesian EM(VB-EM)algorithm is introduced in this paper to determine the number of mixture components adaptively according to the observations.Moreover,to solve the problem of data packet loss caused by unreliable links,we propose a robust time synchronization(RTS)method in this paper.RTS establishes an autoregressive model for clock skew,and calculates the clock parameters based on the established autoregressive model in case of packet loss.The final simulation results illustrate that VB-CPF yields much more accurate results relative to GMKPF when the network delays are modeled in terms of an asymmetric Gaussian distribution.Moreover,RTS shows good robustness to the continuous and random dropout of time messages.展开更多
Recent advances in wireless sensor technology have enabled simultaneous exploitation of multiple channels in wireless sensor systems. In this paper, a novel time synchronization algorithm is proposed for multi- channe...Recent advances in wireless sensor technology have enabled simultaneous exploitation of multiple channels in wireless sensor systems. In this paper, a novel time synchronization algorithm is proposed for multi- channel Wireless Sensor Networks (WSNs) called Multi-Channel Time Synchronization (MCTS) protocol. Time synchronization is critical for many WSN applications and enables efficient communications between sensor nodes along with intelligent spectrum access. Contrary to many existing protocols that do not exploit multi-channel communications, the protocol takes advantage of potential multiple channels and distributes the synchronization of different nodes to distinct channels and thus, reduces the convergence time of synchronization processes significantly.展开更多
This paper proposes a distributed second-order consensus time synchronization, which incorporates the second-order consensus algorithm into wireless sensor networks. Since local clocks may have different skews and off...This paper proposes a distributed second-order consensus time synchronization, which incorporates the second-order consensus algorithm into wireless sensor networks. Since local clocks may have different skews and offsets, the algorithm is designed to include offset compensation and skew compensation. The local clocks are not directly modified, thus the virtual clocks are built according to the local clocks via the compensation parameters. Each node achieves a virtual consensus clock by periodically updated compensation parameters. Finally, the effectiveness of the proposed algorithm is verified through a number of simulations in a mesh network. It is proved that the proposed algorithm has the advantage of being distributed, asymptotic convergence, and robust to new node joining.展开更多
In this work we find a lower bound on the energy required for synchronizing moving sensor nodes in a Wireless Sensor Network (WSN) affected by large-scale fading, based on clock estimation techniques. The energy requi...In this work we find a lower bound on the energy required for synchronizing moving sensor nodes in a Wireless Sensor Network (WSN) affected by large-scale fading, based on clock estimation techniques. The energy required for synchronizing a WSN within a desired estimation error level is specified by both the transmit power and the required number of messages. In this paper we extend our previous work introducing nodes’ movement and the average message delay in the total energy, including a comprehensive analysis on how the distance between nodes impacts on the energy and synchronization quality trade-off under large-scale fading effects.展开更多
Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade...Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.展开更多
Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmissio...Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmission delay and packet loss.It compensates for transmission delay and packet loss firstly,and then,estimates clock skew and clock offset in two steps.Simulation and experiment results show that the proposed protocol can keep synchronization error below 2μs in the grid network of 10 nodes or the random network of 90 nodes.Moreover,the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.展开更多
In this work, the existing trade-off between time synchronization quality and energy is studied for both large-scale and small-scale fading wireless channels. We analyze the clock offset estimation problem using one-w...In this work, the existing trade-off between time synchronization quality and energy is studied for both large-scale and small-scale fading wireless channels. We analyze the clock offset estimation problem using one-way, two-way and N-way message exchange mechanisms affected by Gaussian and exponentially distributed impairments. Our main contribution is a general relationship between the total energy required for synchronizing a wireless sensor network and the clock offset estimation error by means of the transmit power, number of transmitted messages and average message delay, deriving the energy optimal lower bound as a function of the time synchronization quality and the number of hops in a multi-hop network.展开更多
This paper proposes a new fault-tolerant time synchronization algorithm for wireless sensor networks that requires a short time for synchronization, achieves a guaranteed time synchronization level for all non-faulty ...This paper proposes a new fault-tolerant time synchronization algorithm for wireless sensor networks that requires a short time for synchronization, achieves a guaranteed time synchronization level for all non-faulty nodes, accommodates nodes that enter suspended mode and then wake up, is computationally efficient, operates in a completely decentralized manner and tolerates up to f (out of 2 f + 1 total) faulty nodes. The performance of the proposed algorithm is analyzed, and an equation is derived for the resynchronization interval required for a specific level of synchronization precision. Results obtained from real runs on multi-hop networks are used to demonstrate the claimed features of the proposed algorithm.展开更多
One of the important aspects in wireless sensor networks is time synchronization. Many applications such as military activity monitoring, environmental monitoring and forest fire monitoring require highly accurate tim...One of the important aspects in wireless sensor networks is time synchronization. Many applications such as military activity monitoring, environmental monitoring and forest fire monitoring require highly accurate time synchronization. Time synchronization assures that all the sensor nodes in wireless sensor network have the same clock time. It is not only essential for aforementioned applications but it is mandatory for TDMA scheduling and proper duty cycle coordination. Time synchronization is a challenging problem due to energy constraints. Most of the existing synchronization protocols use fixed nodes for synchronization, but in the proposed synchronization, algorithm mobile nodes are used to synchronize the stationary nodes in the sensing field. In this paper, we propose a new time synchronization algorithm, named controlled mobility time synchronization (CMTS) with the objective to achieve the higher accuracy while synchronizing the nodes. The proposed approach is used in this paper to synchronize the nodes externally by using the mobile nodes. Simulation results exhibit that proposed controlled mobility time synchronization increases the synchronization precision and reduces the energy consumption as well as synchronization error by reducing the collisions and retransmissions.展开更多
The Clapping and Broadcasting Synchronization (CBS) algorithm, which is specifically designed for large-scale sensor networks with low communication overhead and high synchronization accuracy, is introduced. The CBS...The Clapping and Broadcasting Synchronization (CBS) algorithm, which is specifically designed for large-scale sensor networks with low communication overhead and high synchronization accuracy, is introduced. The CBS protocol uses broadcasting rather than pairwise communication to accomplish synchronization. In the CBS scheme, the initial offset of local clocks can be successfully eliminated by the operation of clapping nodes, which leads to significant improvement in synchronization accuracy. The CBS protocol was implemented on the TelosB platform and its performance was evaluated in a variety of experiments. The results demonstrate that the CBS protocol outperforms the current state-of-the-art approach, the Flooding Time Synchronization Protocol (FTSP), in both single-hop and multi-hop scenarios in terms of synchronous precision and energy consumption. In multi-hop scenarios, the CBS algorithm keeps about 50% of its synchronization errors within 1 ms. In comparison, the FTSP keeps less than 7% of its synchronization errors within this range. In both single-hop and multi-hop scenarios, the CBS protocol is over 3.2 times more energy-efficient than the FTSP.展开更多
Two-way packet exchange synchronization scheme has been widely used in wireless sensor networks. However, due to the fact that its synchronization error accumulates rapidly over hop count, its applications are greatly...Two-way packet exchange synchronization scheme has been widely used in wireless sensor networks. However, due to the fact that its synchronization error accumulates rapidly over hop count, its applications are greatly restricted. In this paper, the factors that cause the accumulation of synchronization error over hop count are investigated. Theoretical analysis shows that two factors including the clock drift and the asymmetry of two-way packet exchange, have distinct influences on synchronization error between two adjacent nodes. Further, the clock frequency order along synchronization path is found to be vital to the accumulation of synchronization error. The above three factors jointly determine the accumulation of synchronization error over hop count in wireless network. Theoretic results are also verified by three fine-grained experiments on wireless sensor network testbed. The conclusions can be used to decrease synchronization error for large-scale wireless network by careful network deployment.展开更多
时间同步技术作为无线微震传感器网络的核心技术之一,是网络协调运行的关键。首先研究了无线传感器网络时间同步原理及影响同步精度的因素;其次研究了经典无线时间同步协的实现方法;然后仿真对比了传感器网络时间同步协议(Timing-sync P...时间同步技术作为无线微震传感器网络的核心技术之一,是网络协调运行的关键。首先研究了无线传感器网络时间同步原理及影响同步精度的因素;其次研究了经典无线时间同步协的实现方法;然后仿真对比了传感器网络时间同步协议(Timing-sync Protocol for Sensor Networks,TPSN)和泛洪式时间同步协议(Flooding Time Synchronization Protocol,FTSP)的同步精度;再针对FTSP协议的不足提出一种改进的G-FTSP协议,能有效提高无线传感器网络时间同步精度;最后估算由时间同步误差造成的微震震源定位误差,验证G-FTSP协议满足实际生产需求。展开更多
基金funded by Universiti Putra Malaysia under a Geran Putra Inisiatif(GPI)research grant with reference to GP-GPI/2023/9762100.
文摘This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.
基金Supported in part by National Basic Research Program of P. R. China(2005CB321604) in part by National Natural Science Foundation of P. R. China (90207002)
文摘Time synchronization is a critical middleware service of wireless sensor networks. Researchers have already proposed some time synchronization algorithms. However, due to the demands for various synchronization precision, existing time synchronization algorithms often need to be adapted. So it is necessary to evaluate these adapted algorithms before use. Software simulation is a valid and quick way to do it. In this paper, we present a time synchronization simulator, Simsync, for wireless sensor networks. We decompose the packet delay into 6 delay components and model them separately. The frequency of crystal oscillator is modeled as Gaussian. To testify its effectiveness, we simulate the reference broadcast synchronization algorithm (RBS) and the timing-sync synchronization algorithm (TPSN) on Simsync. Simulated results are also presented and analyzed.
基金This work was supported by the National Natural Science Foundation of China(No.61672299)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China(No.18KJB520035)+2 种基金the Youth Foundation of Nanjing University of Finance and Economics(No.L-JXL18002)the Youth Foundation of Nanjing University of Posts and Telecommunications(No.NY218142)the Natural Science Foundation of Jiangsu Province(No.BK20160913).
文摘To cope with the arbitrariness of the network delays,a novel method,referred to as the composite particle filter approach based on variational Bayesian(VB-CPF),is proposed herein to estimate the clock skew and clock offset in wireless sensor networks.VB-CPF is an improvement of the Gaussian mixture kalman particle filter(GMKPF)algorithm.In GMKPF,Expectation-Maximization(EM)algorithm needs to determine the number of mixture components in advance,and it is easy to generate overfitting and underfitting.Variational Bayesian EM(VB-EM)algorithm is introduced in this paper to determine the number of mixture components adaptively according to the observations.Moreover,to solve the problem of data packet loss caused by unreliable links,we propose a robust time synchronization(RTS)method in this paper.RTS establishes an autoregressive model for clock skew,and calculates the clock parameters based on the established autoregressive model in case of packet loss.The final simulation results illustrate that VB-CPF yields much more accurate results relative to GMKPF when the network delays are modeled in terms of an asymmetric Gaussian distribution.Moreover,RTS shows good robustness to the continuous and random dropout of time messages.
基金supported in part by TEKES(Finnish Funding Agency for Technology and Innovation)as part of the Wireless Sensor and Actuator Networks for Measurement and Control(WiSA-II)programby the U.S.Army Research Office under Cooperative Agreement W911NF-04-2-0054.
文摘Recent advances in wireless sensor technology have enabled simultaneous exploitation of multiple channels in wireless sensor systems. In this paper, a novel time synchronization algorithm is proposed for multi- channel Wireless Sensor Networks (WSNs) called Multi-Channel Time Synchronization (MCTS) protocol. Time synchronization is critical for many WSN applications and enables efficient communications between sensor nodes along with intelligent spectrum access. Contrary to many existing protocols that do not exploit multi-channel communications, the protocol takes advantage of potential multiple channels and distributes the synchronization of different nodes to distinct channels and thus, reduces the convergence time of synchronization processes significantly.
基金Supported by the National Natural Science Foundation of China(No.61340034)the Research Program of Application Foundation and Advanced Technology of Tianjin(No.13JCYBJC15600)
文摘This paper proposes a distributed second-order consensus time synchronization, which incorporates the second-order consensus algorithm into wireless sensor networks. Since local clocks may have different skews and offsets, the algorithm is designed to include offset compensation and skew compensation. The local clocks are not directly modified, thus the virtual clocks are built according to the local clocks via the compensation parameters. Each node achieves a virtual consensus clock by periodically updated compensation parameters. Finally, the effectiveness of the proposed algorithm is verified through a number of simulations in a mesh network. It is proved that the proposed algorithm has the advantage of being distributed, asymptotic convergence, and robust to new node joining.
文摘In this work we find a lower bound on the energy required for synchronizing moving sensor nodes in a Wireless Sensor Network (WSN) affected by large-scale fading, based on clock estimation techniques. The energy required for synchronizing a WSN within a desired estimation error level is specified by both the transmit power and the required number of messages. In this paper we extend our previous work introducing nodes’ movement and the average message delay in the total energy, including a comprehensive analysis on how the distance between nodes impacts on the energy and synchronization quality trade-off under large-scale fading effects.
基金this project under Geran Putra Inisiatif(GPI)with reference of GP-GPI/2023/976210。
文摘Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.
文摘Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmission delay and packet loss.It compensates for transmission delay and packet loss firstly,and then,estimates clock skew and clock offset in two steps.Simulation and experiment results show that the proposed protocol can keep synchronization error below 2μs in the grid network of 10 nodes or the random network of 90 nodes.Moreover,the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.
文摘In this work, the existing trade-off between time synchronization quality and energy is studied for both large-scale and small-scale fading wireless channels. We analyze the clock offset estimation problem using one-way, two-way and N-way message exchange mechanisms affected by Gaussian and exponentially distributed impairments. Our main contribution is a general relationship between the total energy required for synchronizing a wireless sensor network and the clock offset estimation error by means of the transmit power, number of transmitted messages and average message delay, deriving the energy optimal lower bound as a function of the time synchronization quality and the number of hops in a multi-hop network.
文摘This paper proposes a new fault-tolerant time synchronization algorithm for wireless sensor networks that requires a short time for synchronization, achieves a guaranteed time synchronization level for all non-faulty nodes, accommodates nodes that enter suspended mode and then wake up, is computationally efficient, operates in a completely decentralized manner and tolerates up to f (out of 2 f + 1 total) faulty nodes. The performance of the proposed algorithm is analyzed, and an equation is derived for the resynchronization interval required for a specific level of synchronization precision. Results obtained from real runs on multi-hop networks are used to demonstrate the claimed features of the proposed algorithm.
文摘One of the important aspects in wireless sensor networks is time synchronization. Many applications such as military activity monitoring, environmental monitoring and forest fire monitoring require highly accurate time synchronization. Time synchronization assures that all the sensor nodes in wireless sensor network have the same clock time. It is not only essential for aforementioned applications but it is mandatory for TDMA scheduling and proper duty cycle coordination. Time synchronization is a challenging problem due to energy constraints. Most of the existing synchronization protocols use fixed nodes for synchronization, but in the proposed synchronization, algorithm mobile nodes are used to synchronize the stationary nodes in the sensing field. In this paper, we propose a new time synchronization algorithm, named controlled mobility time synchronization (CMTS) with the objective to achieve the higher accuracy while synchronizing the nodes. The proposed approach is used in this paper to synchronize the nodes externally by using the mobile nodes. Simulation results exhibit that proposed controlled mobility time synchronization increases the synchronization precision and reduces the energy consumption as well as synchronization error by reducing the collisions and retransmissions.
基金Supported by the National Key Basic Research and Development Program (973) of China (No. 2010CB334707)the National Natural Science Foundation of China (Nos. 60803126 and 61003298)+1 种基金the Natural Science Foundation of Zhejiang Province (Nos. Z1080979 and Y1101336)the Program for Zhejiang Provincial Key Innovative Research Team on Sensor Networks
文摘The Clapping and Broadcasting Synchronization (CBS) algorithm, which is specifically designed for large-scale sensor networks with low communication overhead and high synchronization accuracy, is introduced. The CBS protocol uses broadcasting rather than pairwise communication to accomplish synchronization. In the CBS scheme, the initial offset of local clocks can be successfully eliminated by the operation of clapping nodes, which leads to significant improvement in synchronization accuracy. The CBS protocol was implemented on the TelosB platform and its performance was evaluated in a variety of experiments. The results demonstrate that the CBS protocol outperforms the current state-of-the-art approach, the Flooding Time Synchronization Protocol (FTSP), in both single-hop and multi-hop scenarios in terms of synchronous precision and energy consumption. In multi-hop scenarios, the CBS algorithm keeps about 50% of its synchronization errors within 1 ms. In comparison, the FTSP keeps less than 7% of its synchronization errors within this range. In both single-hop and multi-hop scenarios, the CBS protocol is over 3.2 times more energy-efficient than the FTSP.
基金Supported by the National Natural Science Foundation of China (61003307, 61173132, 60803159),the Basic Disciplines Research Foundation of China University of Petroleum, Beijing (JCXK-2010-01), Key Laboratory of Computer System and Architecture, ICT,CAS(ICT-ARCH200901), and the Open Laboratory for the Internet Fundamental Technology, China Intemet Network Information Center(2012-N03)
文摘Two-way packet exchange synchronization scheme has been widely used in wireless sensor networks. However, due to the fact that its synchronization error accumulates rapidly over hop count, its applications are greatly restricted. In this paper, the factors that cause the accumulation of synchronization error over hop count are investigated. Theoretical analysis shows that two factors including the clock drift and the asymmetry of two-way packet exchange, have distinct influences on synchronization error between two adjacent nodes. Further, the clock frequency order along synchronization path is found to be vital to the accumulation of synchronization error. The above three factors jointly determine the accumulation of synchronization error over hop count in wireless network. Theoretic results are also verified by three fine-grained experiments on wireless sensor network testbed. The conclusions can be used to decrease synchronization error for large-scale wireless network by careful network deployment.
文摘时间同步技术作为无线微震传感器网络的核心技术之一,是网络协调运行的关键。首先研究了无线传感器网络时间同步原理及影响同步精度的因素;其次研究了经典无线时间同步协的实现方法;然后仿真对比了传感器网络时间同步协议(Timing-sync Protocol for Sensor Networks,TPSN)和泛洪式时间同步协议(Flooding Time Synchronization Protocol,FTSP)的同步精度;再针对FTSP协议的不足提出一种改进的G-FTSP协议,能有效提高无线传感器网络时间同步精度;最后估算由时间同步误差造成的微震震源定位误差,验证G-FTSP协议满足实际生产需求。