With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency an...With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions.展开更多
Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked con...Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints.No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications.However,due to inappropriate message fragmentation,the realtime performance of no-wait scheduling algorithms is reduced.Therefore,in this paper,joint algorithms of message fragmentation and no-wait scheduling are proposed.First,a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions.Second,to improve the scalability of our algorithm,the worst-case delay of messages is analyzed,and then,based on the analysis,a heuristic algorithm is proposed to construct low-delay schedules.Finally,we conduct extensive test cases to evaluate our proposed algorithms.The evaluation results indicate that,compared to existing algorithms,the proposed joint algorithm improves schedulability by up to 50%.展开更多
Time Sensitive Networking(TSN)will be an integral component of industrial networking.Time synchronization in TSN is provided by the IEEE-1588,Precision Time Protocol(PTP)protocol.The standard,dating back to 2008,margi...Time Sensitive Networking(TSN)will be an integral component of industrial networking.Time synchronization in TSN is provided by the IEEE-1588,Precision Time Protocol(PTP)protocol.The standard,dating back to 2008,marginally addresses security aspects,notably not encompassing the frames designed for management purposes(Type Length Values or TLVs).In this work we show that the TLVs can be abused by an attacker to reconfigure,manipulate,or shut down time synchronization.The effects of such an attack can be serious,ranging from interruption of operations to actual unintended behavior of industrial devices,possibly resulting in physical damages or even harm to operators.The paper analyzes the root causes of this vulnerability,and provides concrete examples of attacks leveraging it to de-synchronize the clocks,showing that they can succeed with limited resources,realistically available to a malicious actor.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
文摘With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions.
基金partially supported by National Key Research and Development Program of China(2018YFB1700200)National Natural Science Foundation of China(61972389,61903356,61803368,U1908212)+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,National Science and Technology Major Project(2017ZX02101007-004)Liaoning Provincial Natural Science Foundation of China(2020-MS-034,2019-YQ-09)China Postdoctoral Science Foundation(2019M661156)。
文摘Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints.No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications.However,due to inappropriate message fragmentation,the realtime performance of no-wait scheduling algorithms is reduced.Therefore,in this paper,joint algorithms of message fragmentation and no-wait scheduling are proposed.First,a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions.Second,to improve the scalability of our algorithm,the worst-case delay of messages is analyzed,and then,based on the analysis,a heuristic algorithm is proposed to construct low-delay schedules.Finally,we conduct extensive test cases to evaluate our proposed algorithms.The evaluation results indicate that,compared to existing algorithms,the proposed joint algorithm improves schedulability by up to 50%.
文摘Time Sensitive Networking(TSN)will be an integral component of industrial networking.Time synchronization in TSN is provided by the IEEE-1588,Precision Time Protocol(PTP)protocol.The standard,dating back to 2008,marginally addresses security aspects,notably not encompassing the frames designed for management purposes(Type Length Values or TLVs).In this work we show that the TLVs can be abused by an attacker to reconfigure,manipulate,or shut down time synchronization.The effects of such an attack can be serious,ranging from interruption of operations to actual unintended behavior of industrial devices,possibly resulting in physical damages or even harm to operators.The paper analyzes the root causes of this vulnerability,and provides concrete examples of attacks leveraging it to de-synchronize the clocks,showing that they can succeed with limited resources,realistically available to a malicious actor.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.