The Proccss of gascous hydrogcn charging into a Ti_3Al- based alloy in the temperature range of 500-650℃isinvcstigatcd. The rcsnlls snoxvc that in rclatiollshil, between the average hydrogen concentration at constant...The Proccss of gascous hydrogcn charging into a Ti_3Al- based alloy in the temperature range of 500-650℃isinvcstigatcd. The rcsnlls snoxvc that in rclatiollshil, between the average hydrogen concentration at constant tempreature and charging time reveals a parabolie rate law Applying the theory of lattice constant tcnlpcralurc and hrgillg tin rcvcals a parabolic riltc laiv. Applyillg tbcthcoly oftatticc dillbsio to allalyzc the hydrogcll diethesioll they andthat cncrgy of hydrogcn diffusion is 90.40 kJ/mol. and the equilibrium hydrogen content in the alloy depends on the temperature of the gaseous hydrogen charging process展开更多
The hot corrosion behaviour of a modified Ti3Al-based alloy under thin Na2SO4deposit film was investigated at910and950°C in air.The corrosion product was identified by XRD and its morphologies on the surface and ...The hot corrosion behaviour of a modified Ti3Al-based alloy under thin Na2SO4deposit film was investigated at910and950°C in air.The corrosion product was identified by XRD and its morphologies on the surface and cross-section were observed bySEM.The alloy suffered from considerable hot corrosion attack.The mass gain versus time curves obtained by TGA exhibited tworegions of different kinetics.The whole corroded layer consisted of loose and porous mixture oxides of TiO2,Nb2O5and Al2O3.Numerous small nodules of corrosion product were observed.An illustrative schematic was established to describe the formationprocess of such nodules.It seemed that the refractory oxides played a significantly important role in determining the development ofhot corrosion attack.展开更多
文章采用有机分子焊接方法,将苝-3,4,9,10-四羧酸二酐(PTCDA)分子通过酰胺键焊接于Ti_(3)CN层间,制备了PTCDA分子焊接插层的Ti_(3)CN(Ti_(3)CN-PTCDA)。PTCDA分子焊接不仅扩大了Ti_(3)CN层状结构的层间距,而且提升了其层结构稳定性,从...文章采用有机分子焊接方法,将苝-3,4,9,10-四羧酸二酐(PTCDA)分子通过酰胺键焊接于Ti_(3)CN层间,制备了PTCDA分子焊接插层的Ti_(3)CN(Ti_(3)CN-PTCDA)。PTCDA分子焊接不仅扩大了Ti_(3)CN层状结构的层间距,而且提升了其层结构稳定性,从而显著提高了储钠倍率性能和循环稳定性。在0.1Ag^(-1)电流密度下,Ti_(3)CN-PTCDA材料的比容量经过895次循环后可达127.9 mAh g^(-1),当电流密度提升至5.0Ag^(-1)时仍可保持51.8 mAh g^(-1)。本研究证明,二维储钠材料的层结构对其储钠倍率和循环稳定性有重要影响,该结论为设计高倍率二维储钠材料提供了新思路。展开更多
文摘The Proccss of gascous hydrogcn charging into a Ti_3Al- based alloy in the temperature range of 500-650℃isinvcstigatcd. The rcsnlls snoxvc that in rclatiollshil, between the average hydrogen concentration at constant tempreature and charging time reveals a parabolie rate law Applying the theory of lattice constant tcnlpcralurc and hrgillg tin rcvcals a parabolic riltc laiv. Applyillg tbcthcoly oftatticc dillbsio to allalyzc the hydrogcll diethesioll they andthat cncrgy of hydrogcn diffusion is 90.40 kJ/mol. and the equilibrium hydrogen content in the alloy depends on the temperature of the gaseous hydrogen charging process
基金Projects(51271191,51571205)supported by the National Natural Science Foundation of China
文摘The hot corrosion behaviour of a modified Ti3Al-based alloy under thin Na2SO4deposit film was investigated at910and950°C in air.The corrosion product was identified by XRD and its morphologies on the surface and cross-section were observed bySEM.The alloy suffered from considerable hot corrosion attack.The mass gain versus time curves obtained by TGA exhibited tworegions of different kinetics.The whole corroded layer consisted of loose and porous mixture oxides of TiO2,Nb2O5and Al2O3.Numerous small nodules of corrosion product were observed.An illustrative schematic was established to describe the formationprocess of such nodules.It seemed that the refractory oxides played a significantly important role in determining the development ofhot corrosion attack.
文摘文章采用有机分子焊接方法,将苝-3,4,9,10-四羧酸二酐(PTCDA)分子通过酰胺键焊接于Ti_(3)CN层间,制备了PTCDA分子焊接插层的Ti_(3)CN(Ti_(3)CN-PTCDA)。PTCDA分子焊接不仅扩大了Ti_(3)CN层状结构的层间距,而且提升了其层结构稳定性,从而显著提高了储钠倍率性能和循环稳定性。在0.1Ag^(-1)电流密度下,Ti_(3)CN-PTCDA材料的比容量经过895次循环后可达127.9 mAh g^(-1),当电流密度提升至5.0Ag^(-1)时仍可保持51.8 mAh g^(-1)。本研究证明,二维储钠材料的层结构对其储钠倍率和循环稳定性有重要影响,该结论为设计高倍率二维储钠材料提供了新思路。