In the present paper, the relations between the microstructure and the properties of Ti-14Al-21Nb and Ti-14Al-20Nb-3.5V-2Mo alloys at different temperatures and different cooling rates of heat treatment were re-vealed...In the present paper, the relations between the microstructure and the properties of Ti-14Al-21Nb and Ti-14Al-20Nb-3.5V-2Mo alloys at different temperatures and different cooling rates of heat treatment were re-vealed by X-ray , optical microscope , HVTEM , auto-graphical-analyser and mechanical properties test at roomand high temperature. The experimental results show as follows: at 1040~1120℃ 14h WQ, the microstruc-ture of Ti-14Al-21Nb bar is primary phaseα_2+B2. With temperature increasing, the primary α_2 phase de-crease and the mechanical properties ultimate tensile strength (UTS), yield strength (YS) and elongation(EL) at room temperature increase. When it has reduced the α_2 phase by 50% (at 1080℃/4h WQ) , the me-chanical properties at room temperature are excellent , EL being 10. 5%. Following the α_2 phase reduces contin-uously , UTS, YS are going up, but EL is going down. After heated at two phases range and cooled down tothe room temperature with furnace, the microstructure of Ti-14Al-20Nb-3.5V-2Mo alloy is the equiaxed α_2+needle-like α_2+βphase. The mechanical properties at room temperature and 700℃ are fairly good.展开更多
The phase transformation and deformation mechanism of the alloy based on composition Ti_3Al with addition of Nb,V,Mo have been studied by use of transmission electron microscopy (TEM).It has been shown that the orient...The phase transformation and deformation mechanism of the alloy based on composition Ti_3Al with addition of Nb,V,Mo have been studied by use of transmission electron microscopy (TEM).It has been shown that the orientation relationship of α_2 phase transformed from β phase is:(0001)α_2// (l10)β,[1210]α_2//[111]β.The present dislocation slip systems in α_2 phase are (1100)[0001] and (1100)<1120>.There also exist α_2 twins which have new twin relationship and the twin plane is (2021).展开更多
The Proccss of gascous hydrogcn charging into a Ti_3Al- based alloy in the temperature range of 500-650℃isinvcstigatcd. The rcsnlls snoxvc that in rclatiollshil, between the average hydrogen concentration at constant...The Proccss of gascous hydrogcn charging into a Ti_3Al- based alloy in the temperature range of 500-650℃isinvcstigatcd. The rcsnlls snoxvc that in rclatiollshil, between the average hydrogen concentration at constant tempreature and charging time reveals a parabolie rate law Applying the theory of lattice constant tcnlpcralurc and hrgillg tin rcvcals a parabolic riltc laiv. Applyillg tbcthcoly oftatticc dillbsio to allalyzc the hydrogcll diethesioll they andthat cncrgy of hydrogcn diffusion is 90.40 kJ/mol. and the equilibrium hydrogen content in the alloy depends on the temperature of the gaseous hydrogen charging process展开更多
The hot corrosion behaviour of a modified Ti3Al-based alloy under thin Na2SO4deposit film was investigated at910and950°C in air.The corrosion product was identified by XRD and its morphologies on the surface and ...The hot corrosion behaviour of a modified Ti3Al-based alloy under thin Na2SO4deposit film was investigated at910and950°C in air.The corrosion product was identified by XRD and its morphologies on the surface and cross-section were observed bySEM.The alloy suffered from considerable hot corrosion attack.The mass gain versus time curves obtained by TGA exhibited tworegions of different kinetics.The whole corroded layer consisted of loose and porous mixture oxides of TiO2,Nb2O5and Al2O3.Numerous small nodules of corrosion product were observed.An illustrative schematic was established to describe the formationprocess of such nodules.It seemed that the refractory oxides played a significantly important role in determining the development ofhot corrosion attack.展开更多
1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isi...1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isimposed by oxidation and degradation ofcreep strength,and relatively little know-展开更多
文章采用有机分子焊接方法,将苝-3,4,9,10-四羧酸二酐(PTCDA)分子通过酰胺键焊接于Ti_(3)CN层间,制备了PTCDA分子焊接插层的Ti_(3)CN(Ti_(3)CN-PTCDA)。PTCDA分子焊接不仅扩大了Ti_(3)CN层状结构的层间距,而且提升了其层结构稳定性,从...文章采用有机分子焊接方法,将苝-3,4,9,10-四羧酸二酐(PTCDA)分子通过酰胺键焊接于Ti_(3)CN层间,制备了PTCDA分子焊接插层的Ti_(3)CN(Ti_(3)CN-PTCDA)。PTCDA分子焊接不仅扩大了Ti_(3)CN层状结构的层间距,而且提升了其层结构稳定性,从而显著提高了储钠倍率性能和循环稳定性。在0.1Ag^(-1)电流密度下,Ti_(3)CN-PTCDA材料的比容量经过895次循环后可达127.9 mAh g^(-1),当电流密度提升至5.0Ag^(-1)时仍可保持51.8 mAh g^(-1)。本研究证明,二维储钠材料的层结构对其储钠倍率和循环稳定性有重要影响,该结论为设计高倍率二维储钠材料提供了新思路。展开更多
文摘In the present paper, the relations between the microstructure and the properties of Ti-14Al-21Nb and Ti-14Al-20Nb-3.5V-2Mo alloys at different temperatures and different cooling rates of heat treatment were re-vealed by X-ray , optical microscope , HVTEM , auto-graphical-analyser and mechanical properties test at roomand high temperature. The experimental results show as follows: at 1040~1120℃ 14h WQ, the microstruc-ture of Ti-14Al-21Nb bar is primary phaseα_2+B2. With temperature increasing, the primary α_2 phase de-crease and the mechanical properties ultimate tensile strength (UTS), yield strength (YS) and elongation(EL) at room temperature increase. When it has reduced the α_2 phase by 50% (at 1080℃/4h WQ) , the me-chanical properties at room temperature are excellent , EL being 10. 5%. Following the α_2 phase reduces contin-uously , UTS, YS are going up, but EL is going down. After heated at two phases range and cooled down tothe room temperature with furnace, the microstructure of Ti-14Al-20Nb-3.5V-2Mo alloy is the equiaxed α_2+needle-like α_2+βphase. The mechanical properties at room temperature and 700℃ are fairly good.
文摘The phase transformation and deformation mechanism of the alloy based on composition Ti_3Al with addition of Nb,V,Mo have been studied by use of transmission electron microscopy (TEM).It has been shown that the orientation relationship of α_2 phase transformed from β phase is:(0001)α_2// (l10)β,[1210]α_2//[111]β.The present dislocation slip systems in α_2 phase are (1100)[0001] and (1100)<1120>.There also exist α_2 twins which have new twin relationship and the twin plane is (2021).
文摘The Proccss of gascous hydrogcn charging into a Ti_3Al- based alloy in the temperature range of 500-650℃isinvcstigatcd. The rcsnlls snoxvc that in rclatiollshil, between the average hydrogen concentration at constant tempreature and charging time reveals a parabolie rate law Applying the theory of lattice constant tcnlpcralurc and hrgillg tin rcvcals a parabolic riltc laiv. Applyillg tbcthcoly oftatticc dillbsio to allalyzc the hydrogcll diethesioll they andthat cncrgy of hydrogcn diffusion is 90.40 kJ/mol. and the equilibrium hydrogen content in the alloy depends on the temperature of the gaseous hydrogen charging process
基金Projects(51271191,51571205)supported by the National Natural Science Foundation of China
文摘The hot corrosion behaviour of a modified Ti3Al-based alloy under thin Na2SO4deposit film was investigated at910and950°C in air.The corrosion product was identified by XRD and its morphologies on the surface and cross-section were observed bySEM.The alloy suffered from considerable hot corrosion attack.The mass gain versus time curves obtained by TGA exhibited tworegions of different kinetics.The whole corroded layer consisted of loose and porous mixture oxides of TiO2,Nb2O5and Al2O3.Numerous small nodules of corrosion product were observed.An illustrative schematic was established to describe the formationprocess of such nodules.It seemed that the refractory oxides played a significantly important role in determining the development ofhot corrosion attack.
文摘1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isimposed by oxidation and degradation ofcreep strength,and relatively little know-
文摘文章采用有机分子焊接方法,将苝-3,4,9,10-四羧酸二酐(PTCDA)分子通过酰胺键焊接于Ti_(3)CN层间,制备了PTCDA分子焊接插层的Ti_(3)CN(Ti_(3)CN-PTCDA)。PTCDA分子焊接不仅扩大了Ti_(3)CN层状结构的层间距,而且提升了其层结构稳定性,从而显著提高了储钠倍率性能和循环稳定性。在0.1Ag^(-1)电流密度下,Ti_(3)CN-PTCDA材料的比容量经过895次循环后可达127.9 mAh g^(-1),当电流密度提升至5.0Ag^(-1)时仍可保持51.8 mAh g^(-1)。本研究证明,二维储钠材料的层结构对其储钠倍率和循环稳定性有重要影响,该结论为设计高倍率二维储钠材料提供了新思路。