The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel dis...The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel disc. Wear rates and friction coefficients were registered during wear tests. Worn tracks and wear debris were examined by scanning electron microscopy, energy dispersive X-ray spectrometry and transmission electron microscopy in order to obtain the wear mechanisms of the studied materials. The main mechanisms were characterized as the magnesium matrix oxidation and self-lubrication of Ti_2AlC MAX phase. In all conditions, the composites exhibit superior wear resistance and self-lubricated ability than the AZ91 Mg alloy. In addition, the anisotropic mechanisms in tribological properties of textured Ti_2AlC-Mg composites were confirmed and discussed.展开更多
Improving the high-temperature performance of Inconel 718(IN718)alloys manufactured via laser powder bed fusion(LPBF)has been the most concerned issue in the industry.In this study,the effects of Ti_(2)AlC inoculants ...Improving the high-temperature performance of Inconel 718(IN718)alloys manufactured via laser powder bed fusion(LPBF)has been the most concerned issue in the industry.In this study,the effects of Ti_(2)AlC inoculants on microstructures and high-temperature mechanical properties of the as-built IN718 composites were investigated.According to statistical results of relative density and unmelted particle area in as-built alloys,the optimal energy of 112 J/mm^(3)was determined.It was observed that the precipitation of the MC carbide was significantly enhanced with the addition of Ti_(2)AlC,restricting the precipitation of the Laves phase.The MC particles were uniformly distributed along the subgrain boundaries,which contributed to the dispersion strengthening.Meanwhile,the MC particles served as nucleation sites for heterogeneous nucleation during the solidification process,facilitating the refinement of columnar and cellular grains.The simulated Scheil-Gulliver curves showed that the precipitation sequence of phases did not change with Ti_(2)AlC inoculants.The as-built 1%Ti_(2)AlC/IN718 sample demonstrated an ultimate tensile strength of 998.78 MPa and an elongation of 18.04%at 650℃,revealing a markedly improved mechanical performance compared with the LPBF-manufactured IN718 alloys.The high-temperature tensile strength of 1%Ti_(2)AlC/IN718 sample increased to 1197.99 MPa by heat treatment.It was suggested that dislocation strengthening and ordered strengthening were two most important reinforcement mechanisms.展开更多
Ti_(2)AlC/TiAl composites with a network structure were successfully prepared with carbon nanotubes and Ti-45Al-8Nb pre-alloyed powder using spark plasma sintering.The effects of sintering temperature(1200-1350℃)on t...Ti_(2)AlC/TiAl composites with a network structure were successfully prepared with carbon nanotubes and Ti-45Al-8Nb pre-alloyed powder using spark plasma sintering.The effects of sintering temperature(1200-1350℃)on the microstructural evolution and mechanical properties were systematically investigated.The microstructure of Ti_(2)AlC/TiAl composites exhibits duplex,near-lamellar,and fully lamellar structures,as the sintering temperature increases from 1200 to 1350℃.The network structured Ti_(2)AlC phase can refine the microstructure and the phase becomes discontinuous at high sintering temperatures.Notably,composites sintered at 1300℃ exhibit excellent mechanical properties,with the highest compressive strength(1921 MPa)and fracture strain(26%)at room temperature.Moreover,the ultimate tensile strength and fracture strain reach 537 MPa and 3.1%at 900℃,and 485 MPa and 3.3%at 950℃,respectively.The enhancement of the mechanical properties is attributed primarily to the load bearing,particle pull-out,and inhibition of crack propagation induced by Ti_(2)AlC particles.展开更多
Laser specific energy significantly impacts the quality of composite coatings.Ti−Al/WC coatings were prepared on the TC21 alloy through laser cladding with specific energy ranging from 66.7 to 133.3 J/mm^(2).The resul...Laser specific energy significantly impacts the quality of composite coatings.Ti−Al/WC coatings were prepared on the TC21 alloy through laser cladding with specific energy ranging from 66.7 to 133.3 J/mm^(2).The results indicate that the composite coatings primarily comprised Ti_(2)AlC,α_(2)-Ti_(3)Al,γ-TiAl,TiC,and W phases.A gradual increase in the relative intensity of the diffraction peaks of Ti_(2)AlC,α_(2)-Ti_(3)Al,and TiC appeared with the increase of specific energy.When the specific energy was 116.7 J/mm^(2),the Ti−Al/WC coated alloy achieved a maximum micro-hardness of HV0.2766.3,which represented an increase of 1.96 times compared with TC21 alloy,and the minimum wear rate decreased dramatically.Much improvement in tribological properties was attained through the fine-grained strengthening of the(α_(2)+γ)matrix and the dispersion strengthening of self-lubricating Ti_(2)AlC and intertwining TiC.This study provides valuable insights for the development of high-performance Ti−Al composite coatings.展开更多
The in-situ micro-nano Ti_(2)AlC particles reinforced TiAl(Ti_(2)AlC/TiAl)composite was fabricated using spark plasma sintering.The hot workability of Ti_(2)AlC/TiAl composite was studied,and the effect of micro-nano ...The in-situ micro-nano Ti_(2)AlC particles reinforced TiAl(Ti_(2)AlC/TiAl)composite was fabricated using spark plasma sintering.The hot workability of Ti_(2)AlC/TiAl composite was studied,and the effect of micro-nano particles on flow stress and dynamic recrystallization of composite was discussed.The results showed that the micro-nano Ti_(2)AlC particles included strengthening and softening effects during hot deformation,resulting in the fact that the Ti_(2)AlC/TiAl composite exhibited a higher flow stress and more sufficient dynamic recrystallization.The strengthening effect was mainly attributed to the Ti_(2)AlC particles induced refinement strengthening and hindered dislocation motion at the initial stage.Moreover,the precipitation of nano-TiCr2 particles induced by stress concentration during hot deformation also contributed to higher flow stress via impeding dislocation motion.Meanwhile,the refined microstructure and dislocation pile-up caused by micro-nano particles during deformation provided more nucleation sites for dynamic recrystallization,which significantly promoted the dynamic recrystallization of the second stage.The present results reveal that the Ti_(2)AlC/TiAl composite exhibited excellent hot workability,which is important to promote the application of TiAl alloys.展开更多
基金supported by the National Natural Science Foundation of China (No. 51701010)the Beijing Jiaotong University Foundation for youth scientists (No. No.2017RC013)+1 种基金the Project National United Engineering Laboratory for Advanced Bearing Tribology-Henan University of Science and Technology (No. 201805)the Beijing Government Funds for the Constructive Project of Central Universities (No. 353139535)
文摘The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel disc. Wear rates and friction coefficients were registered during wear tests. Worn tracks and wear debris were examined by scanning electron microscopy, energy dispersive X-ray spectrometry and transmission electron microscopy in order to obtain the wear mechanisms of the studied materials. The main mechanisms were characterized as the magnesium matrix oxidation and self-lubrication of Ti_2AlC MAX phase. In all conditions, the composites exhibit superior wear resistance and self-lubricated ability than the AZ91 Mg alloy. In addition, the anisotropic mechanisms in tribological properties of textured Ti_2AlC-Mg composites were confirmed and discussed.
基金supported by the National Natural Science Foundation of China(Nos.52374396 and 52122409).
文摘Improving the high-temperature performance of Inconel 718(IN718)alloys manufactured via laser powder bed fusion(LPBF)has been the most concerned issue in the industry.In this study,the effects of Ti_(2)AlC inoculants on microstructures and high-temperature mechanical properties of the as-built IN718 composites were investigated.According to statistical results of relative density and unmelted particle area in as-built alloys,the optimal energy of 112 J/mm^(3)was determined.It was observed that the precipitation of the MC carbide was significantly enhanced with the addition of Ti_(2)AlC,restricting the precipitation of the Laves phase.The MC particles were uniformly distributed along the subgrain boundaries,which contributed to the dispersion strengthening.Meanwhile,the MC particles served as nucleation sites for heterogeneous nucleation during the solidification process,facilitating the refinement of columnar and cellular grains.The simulated Scheil-Gulliver curves showed that the precipitation sequence of phases did not change with Ti_(2)AlC inoculants.The as-built 1%Ti_(2)AlC/IN718 sample demonstrated an ultimate tensile strength of 998.78 MPa and an elongation of 18.04%at 650℃,revealing a markedly improved mechanical performance compared with the LPBF-manufactured IN718 alloys.The high-temperature tensile strength of 1%Ti_(2)AlC/IN718 sample increased to 1197.99 MPa by heat treatment.It was suggested that dislocation strengthening and ordered strengthening were two most important reinforcement mechanisms.
基金financially supported by the National Natural Science Foundation of China(Nos.52171120,52271106,52071188)the Natural Science Foundation of Zhejiang Province,China(No.LZY23E050001)。
文摘Ti_(2)AlC/TiAl composites with a network structure were successfully prepared with carbon nanotubes and Ti-45Al-8Nb pre-alloyed powder using spark plasma sintering.The effects of sintering temperature(1200-1350℃)on the microstructural evolution and mechanical properties were systematically investigated.The microstructure of Ti_(2)AlC/TiAl composites exhibits duplex,near-lamellar,and fully lamellar structures,as the sintering temperature increases from 1200 to 1350℃.The network structured Ti_(2)AlC phase can refine the microstructure and the phase becomes discontinuous at high sintering temperatures.Notably,composites sintered at 1300℃ exhibit excellent mechanical properties,with the highest compressive strength(1921 MPa)and fracture strain(26%)at room temperature.Moreover,the ultimate tensile strength and fracture strain reach 537 MPa and 3.1%at 900℃,and 485 MPa and 3.3%at 950℃,respectively.The enhancement of the mechanical properties is attributed primarily to the load bearing,particle pull-out,and inhibition of crack propagation induced by Ti_(2)AlC particles.
基金supported by the Guangxi Science and Technology Program,China(Nos.Guike AD23026170,Guike AD23026116)the Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology,China(No.22-35-4-S019)+3 种基金the Research Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi,China(No.2023KY0202)China Postdoctoral Science Foundation(No.2024M753642)the Guilin Science and Technology Development Program(Project),China(No.20220124-10)the Innovation Project of GUET Graduate Education,China(No.2024YCXS008).
文摘Laser specific energy significantly impacts the quality of composite coatings.Ti−Al/WC coatings were prepared on the TC21 alloy through laser cladding with specific energy ranging from 66.7 to 133.3 J/mm^(2).The results indicate that the composite coatings primarily comprised Ti_(2)AlC,α_(2)-Ti_(3)Al,γ-TiAl,TiC,and W phases.A gradual increase in the relative intensity of the diffraction peaks of Ti_(2)AlC,α_(2)-Ti_(3)Al,and TiC appeared with the increase of specific energy.When the specific energy was 116.7 J/mm^(2),the Ti−Al/WC coated alloy achieved a maximum micro-hardness of HV0.2766.3,which represented an increase of 1.96 times compared with TC21 alloy,and the minimum wear rate decreased dramatically.Much improvement in tribological properties was attained through the fine-grained strengthening of the(α_(2)+γ)matrix and the dispersion strengthening of self-lubricating Ti_(2)AlC and intertwining TiC.This study provides valuable insights for the development of high-performance Ti−Al composite coatings.
基金supported by the National Natural Science Foundation of China(No.52001262)the Natural Science Foundation of Zhejiang Province,China(No.LZY22E010001)the Natural Science Foundation of Shaanxi Province,China(No.2020JC-50)。
文摘The in-situ micro-nano Ti_(2)AlC particles reinforced TiAl(Ti_(2)AlC/TiAl)composite was fabricated using spark plasma sintering.The hot workability of Ti_(2)AlC/TiAl composite was studied,and the effect of micro-nano particles on flow stress and dynamic recrystallization of composite was discussed.The results showed that the micro-nano Ti_(2)AlC particles included strengthening and softening effects during hot deformation,resulting in the fact that the Ti_(2)AlC/TiAl composite exhibited a higher flow stress and more sufficient dynamic recrystallization.The strengthening effect was mainly attributed to the Ti_(2)AlC particles induced refinement strengthening and hindered dislocation motion at the initial stage.Moreover,the precipitation of nano-TiCr2 particles induced by stress concentration during hot deformation also contributed to higher flow stress via impeding dislocation motion.Meanwhile,the refined microstructure and dislocation pile-up caused by micro-nano particles during deformation provided more nucleation sites for dynamic recrystallization,which significantly promoted the dynamic recrystallization of the second stage.The present results reveal that the Ti_(2)AlC/TiAl composite exhibited excellent hot workability,which is important to promote the application of TiAl alloys.
基金National Key R&D Program of China(2017YFB0703201)National Natural Science Foundation of China(51772302)+1 种基金National Natural Science Foundation of China-China National Nuclear Corporation Joint Fund(U2067217)Primary Research and Development Project of Suzhou(SGC201840)。