This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coati...This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coating technique from GO and an aqueous solution of TiO2. A significant decrease in optical band gap was observed at the TiO2-GO compound compared to that of pure TiO2. Samples as prepared were characterized using XRD, SEM and UV-visible spectra. XRD analysis revealed the amorphous nature of the deposited layers. Scanning electron microscope reveals the dispersion of graphene nanofiles among titanium oxide nanoparticles distributed at the surface with an almost uniform size distribution. The band gap has been calculated and is around 2 eV after incorporation of Graphene oxide. The chemical bond C-Ti between the titanium oxide and graphene sheets is at the origin of this reduction.展开更多
This study aimed to explore a new degradation method-photocatalysis technology to polish membrane bioreactor(MBR) effluent, using 2,6-di-tert-butylphenol(2,6-DTBP) as a model soluble microbial product(SMP).2,6-DTBP is...This study aimed to explore a new degradation method-photocatalysis technology to polish membrane bioreactor(MBR) effluent, using 2,6-di-tert-butylphenol(2,6-DTBP) as a model soluble microbial product(SMP).2,6-DTBP is one of the predominant SMPs in MBR effluent, which is refractory and difficult to biodegrade.This study developed a novel carboxylated graphene oxide/titanium dioxide/silver(GO-COOH/TiO2/Ag) nanocomposite to photodegrade 2,6-DTBP.GO-COOH/TiO2/Ag was successfully synthesized, using L-cysteine as the linker bonding TiO2/Ag to GO-COOH.The structural, morphological and optical properties of the GO-COOH/TiO2/Ag nanocomposite were characterized using various techniques.Owing to synergistic effects, the GO-COOH/TiO2/Ag nanocomposite exhibited enhanced photocatalytic degradation performance under solar light irradiation when compared to TiO2, Ag and GO-COOH.To remove 25 mg/L 2,6-DTBP, the reaction time for GOCOOH/TiO2/Ag was only 30 min, faster than the 90 min required for pure TiO2 or Ag.In addition, the 200 mg/L GO-COOH/TiO2/Ag nanocomposite aqueous solution showed the best performance under solar light, with 99% removal of 2,6-DTBP.This enhanced capability is likely due to the surface plasmon resonance(SPR) effect contributed by Ag nanoparticles(NPs) doped onto the TiO2.In addition, GO-COOH had a high effective surface area, which assisted in degrading the 2,6-DTBP through improved adsorption.The stability study showed that the photocatalytic activity of the GO-COOH/TiO2/Ag was stable enough for recycling multiple times.The effective degradation performance and excellent stability demonstrates that the GO-COOH/TiO2/Ag nanocomposite can be a promising photocatalyst in the field of effluent SMP photodegradation, which solves the problem of the difficult biodegradation of highly toxic 2,6-DTBP.展开更多
文摘This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coating technique from GO and an aqueous solution of TiO2. A significant decrease in optical band gap was observed at the TiO2-GO compound compared to that of pure TiO2. Samples as prepared were characterized using XRD, SEM and UV-visible spectra. XRD analysis revealed the amorphous nature of the deposited layers. Scanning electron microscope reveals the dispersion of graphene nanofiles among titanium oxide nanoparticles distributed at the surface with an almost uniform size distribution. The band gap has been calculated and is around 2 eV after incorporation of Graphene oxide. The chemical bond C-Ti between the titanium oxide and graphene sheets is at the origin of this reduction.
基金the financial support received from China Postdoctoral Science Foundation Funded Project(No.2018M641387).
文摘This study aimed to explore a new degradation method-photocatalysis technology to polish membrane bioreactor(MBR) effluent, using 2,6-di-tert-butylphenol(2,6-DTBP) as a model soluble microbial product(SMP).2,6-DTBP is one of the predominant SMPs in MBR effluent, which is refractory and difficult to biodegrade.This study developed a novel carboxylated graphene oxide/titanium dioxide/silver(GO-COOH/TiO2/Ag) nanocomposite to photodegrade 2,6-DTBP.GO-COOH/TiO2/Ag was successfully synthesized, using L-cysteine as the linker bonding TiO2/Ag to GO-COOH.The structural, morphological and optical properties of the GO-COOH/TiO2/Ag nanocomposite were characterized using various techniques.Owing to synergistic effects, the GO-COOH/TiO2/Ag nanocomposite exhibited enhanced photocatalytic degradation performance under solar light irradiation when compared to TiO2, Ag and GO-COOH.To remove 25 mg/L 2,6-DTBP, the reaction time for GOCOOH/TiO2/Ag was only 30 min, faster than the 90 min required for pure TiO2 or Ag.In addition, the 200 mg/L GO-COOH/TiO2/Ag nanocomposite aqueous solution showed the best performance under solar light, with 99% removal of 2,6-DTBP.This enhanced capability is likely due to the surface plasmon resonance(SPR) effect contributed by Ag nanoparticles(NPs) doped onto the TiO2.In addition, GO-COOH had a high effective surface area, which assisted in degrading the 2,6-DTBP through improved adsorption.The stability study showed that the photocatalytic activity of the GO-COOH/TiO2/Ag was stable enough for recycling multiple times.The effective degradation performance and excellent stability demonstrates that the GO-COOH/TiO2/Ag nanocomposite can be a promising photocatalyst in the field of effluent SMP photodegradation, which solves the problem of the difficult biodegradation of highly toxic 2,6-DTBP.