Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunctio...Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunction photocatalyst for water splitting into stoichiometric H_(2)and H_(2)O_(2)under visible light.The catalyst was prepared by depositing 3D bimetallic sulfide(Ag In_(x)S_(y))nanotubes onto 2D g-C_(3)N_(4)nanosheets.Owing to the special 3D-on-2D configuration,the photogenerated carriers could be rapidly transferred and effectively separated through the abundant interfacial heterostructures to avoid recombination,and therefore excellent performance for visible light-driven water splitting could be obtained,with a 24-h H_(2)evolution rate up to 237μmol g^(-1)h^(-1).Furthermore,suitable band alignment enables simultaneous H_(2)and H_(2)O_(2)production in a 1:1 stoichiometric ratio.H_(2)and H_(2)O_(2)were evolved on the conduction band of g-C_(3)N_(4)and on the valance band of Ag In_(x)S_(y),respectively.The novel 3D-on-2D configuration for heterojunction construction proposed in this work provided alternative research ideas toward photocatalytic reaction.展开更多
将工业偏钛酸浆料和尿素混合均匀后高温煅烧制备g-C3N4/TiO2光催化复合材料,对其结构进行了表征,以NO为目标物、波长430~470 nm的12 W LED灯为光源,用对NO的去除率评价复合材料的气相光催化活性.结果表明,所制样品为氮掺杂Ti O2与g-C3N4...将工业偏钛酸浆料和尿素混合均匀后高温煅烧制备g-C3N4/TiO2光催化复合材料,对其结构进行了表征,以NO为目标物、波长430~470 nm的12 W LED灯为光源,用对NO的去除率评价复合材料的气相光催化活性.结果表明,所制样品为氮掺杂Ti O2与g-C3N4/TiO2的复合物.复合材料的最佳制备条件为尿素与偏钛酸质量比2:1,450℃下煅烧1 h,该条件下样品产率最高,对NO的去除率达48.40%.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52362012,42077162,51978323)Natural Science Foundation of Jiangxi Province(No.2022ACB203014)+4 种基金Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(Nos.20213BCJ22018,20232BCJ22048)Natural Science Project of the Educational Department in Jiangxi Province(No.GJJ2201121)Natural Science Foundation of Nanchang Hangkong University(No.EA202202256)Educational Reform Project of Jiangxi Province(No.JXYJG-2022-135)Nanchang Hangkong University Educational Reform Project(Nos.sz2214,sz2213,JY22017,KCPY1806)。
文摘Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunction photocatalyst for water splitting into stoichiometric H_(2)and H_(2)O_(2)under visible light.The catalyst was prepared by depositing 3D bimetallic sulfide(Ag In_(x)S_(y))nanotubes onto 2D g-C_(3)N_(4)nanosheets.Owing to the special 3D-on-2D configuration,the photogenerated carriers could be rapidly transferred and effectively separated through the abundant interfacial heterostructures to avoid recombination,and therefore excellent performance for visible light-driven water splitting could be obtained,with a 24-h H_(2)evolution rate up to 237μmol g^(-1)h^(-1).Furthermore,suitable band alignment enables simultaneous H_(2)and H_(2)O_(2)production in a 1:1 stoichiometric ratio.H_(2)and H_(2)O_(2)were evolved on the conduction band of g-C_(3)N_(4)and on the valance band of Ag In_(x)S_(y),respectively.The novel 3D-on-2D configuration for heterojunction construction proposed in this work provided alternative research ideas toward photocatalytic reaction.