Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To bre...Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.展开更多
Micro-arc oxidation (MAO) coatings with different concentrations of K2TiO(C2O4)2 in the sodium silicate base electrolyte were prepared on 6061 aluminum alloy with the aim of promoting a better understanding of the...Micro-arc oxidation (MAO) coatings with different concentrations of K2TiO(C2O4)2 in the sodium silicate base electrolyte were prepared on 6061 aluminum alloy with the aim of promoting a better understanding of the formation mechanisms and tribological behaviors of the coatings. Scanning electron microscopy (SEM) assisted with energy-dis- persive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and friction test were employed to charac- terize the MAO processes and microstructure of the resultant coatings. Results showed that the composition and microstructure of the coatings were significantly affected by the addition of KETiO(CaO4)2. A sealing microstructure of MAO coating was obtained with the addition of K2TiO(C2O4)2. Ti element from K2TiO(C2O4)2 was only absorbed into the defects of micropores under surface energy in the early stage, while in the later stage, Ti element was predominant in the micropores and distributed on the coatings under plasma discharge to form TiO2. It was demonstrated that Ti and Si elements from the electrolyte could interact with each other during the MAO process and the interaction mechanism was systematically analyzed. Wear resistance of the MAO coatings with K2TiO(C2O4)2 addition was significantly improved compared with that of the MAO coatings without K2TiO(C2O4)2 addition.展开更多
Membranes have attracted much attention as economical methods for industrial chemical processes. The effects of the titanium dioxide nanoparticle load on the morphology and CO2/CH4 separation performance of poly (ethe...Membranes have attracted much attention as economical methods for industrial chemical processes. The effects of the titanium dioxide nanoparticle load on the morphology and CO2/CH4 separation performance of poly (ether-block-amide)(PEBAX-1657) mixed matrix membranes (MMMs) were investigated from pressures of 3-12 bar and temperatures of 30℃-60℃. The PEBAX membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and tensile strength analysis. The incorporation of TiO2 nanoparticles into the polymeric MMMs improved the CO2/CH4 gas separation performance (both the permeability and selectivity) of the membranes. The CO2 permeability and ideal CO2/CH4 selectivity values of the nanocomposite membrane loaded with 8 wt-% TiO2 were 172.32 Barrer and 24.79, respectively whereas those of the neat membrane were 129.87 Barrer and 21.39, respectively.展开更多
An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH4C1 (l mol/L) and dilute H2SO4 (0.5 tool/L), were ...An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH4C1 (l mol/L) and dilute H2SO4 (0.5 tool/L), were employed to treat the used catalyst. The effects of temperature and the regeneration process on the structural and textural properties of the catalysts were determined by X-ray diffraction, scanning electron microscopy, N2 adsorption/desorption, elemental analysis and Fourier transform infrared spectroscopy. The results suggest that the anatase phase of the used catalyst is maintained after exposure to high temperatures. Some of the catalytic activity was restored after regeneration. The catalyst regenerated by aqueous NH4C1 had a higher activity than that of the catalyst treated by dilute H2SO4. The main reason is that the NH3 generated from the decomposition of NH4C1 at high temperatures can be adsorbed onto the catalyst which promotes the reaction. The aggregated V205 were partially re-dispersed during the regeneration process, and the intrinsic oxidation of ammonia with high concentrations of O2 is a factorthat suppresses the catalytic activity.展开更多
基金The authors acknowledge funding from the National Natural Science Foundation of China(Nos.51572157,21902085,and 51702188)Natural Science Foundation of Shandong Province(No.ZR2019QF012)+1 种基金Fundamental Research Funds for the Central Universities(No.2018JC036 and No.2018JC046)Young Scholars Program of Shandong University(No.2018WLJH25).
文摘Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.
基金supported by the National Science Foundation of China(Grant Nos.51571114 and 51201120)the Science and Technology Coordination and Innovation Project of Shaanxi Province(No.2016KTZDGY-04-01)the Shaanxi Provincial Education Department(Grant No.16JK1377)
文摘Micro-arc oxidation (MAO) coatings with different concentrations of K2TiO(C2O4)2 in the sodium silicate base electrolyte were prepared on 6061 aluminum alloy with the aim of promoting a better understanding of the formation mechanisms and tribological behaviors of the coatings. Scanning electron microscopy (SEM) assisted with energy-dis- persive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and friction test were employed to charac- terize the MAO processes and microstructure of the resultant coatings. Results showed that the composition and microstructure of the coatings were significantly affected by the addition of KETiO(CaO4)2. A sealing microstructure of MAO coating was obtained with the addition of K2TiO(C2O4)2. Ti element from K2TiO(C2O4)2 was only absorbed into the defects of micropores under surface energy in the early stage, while in the later stage, Ti element was predominant in the micropores and distributed on the coatings under plasma discharge to form TiO2. It was demonstrated that Ti and Si elements from the electrolyte could interact with each other during the MAO process and the interaction mechanism was systematically analyzed. Wear resistance of the MAO coatings with K2TiO(C2O4)2 addition was significantly improved compared with that of the MAO coatings without K2TiO(C2O4)2 addition.
基金the Iran National Science Foundation (INSF) for supporting this research (Grant No.96008182).
文摘Membranes have attracted much attention as economical methods for industrial chemical processes. The effects of the titanium dioxide nanoparticle load on the morphology and CO2/CH4 separation performance of poly (ether-block-amide)(PEBAX-1657) mixed matrix membranes (MMMs) were investigated from pressures of 3-12 bar and temperatures of 30℃-60℃. The PEBAX membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and tensile strength analysis. The incorporation of TiO2 nanoparticles into the polymeric MMMs improved the CO2/CH4 gas separation performance (both the permeability and selectivity) of the membranes. The CO2 permeability and ideal CO2/CH4 selectivity values of the nanocomposite membrane loaded with 8 wt-% TiO2 were 172.32 Barrer and 24.79, respectively whereas those of the neat membrane were 129.87 Barrer and 21.39, respectively.
文摘An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH4C1 (l mol/L) and dilute H2SO4 (0.5 tool/L), were employed to treat the used catalyst. The effects of temperature and the regeneration process on the structural and textural properties of the catalysts were determined by X-ray diffraction, scanning electron microscopy, N2 adsorption/desorption, elemental analysis and Fourier transform infrared spectroscopy. The results suggest that the anatase phase of the used catalyst is maintained after exposure to high temperatures. Some of the catalytic activity was restored after regeneration. The catalyst regenerated by aqueous NH4C1 had a higher activity than that of the catalyst treated by dilute H2SO4. The main reason is that the NH3 generated from the decomposition of NH4C1 at high temperatures can be adsorbed onto the catalyst which promotes the reaction. The aggregated V205 were partially re-dispersed during the regeneration process, and the intrinsic oxidation of ammonia with high concentrations of O2 is a factorthat suppresses the catalytic activity.