Metallosupramolecular coordination polyelectrolyte, Fe(II)-metalloviologen(FEN), was prepared by the reaction of Fe(II) with a novel bisterpyridine ligand. As active components, FENs could be assembled into elec...Metallosupramolecular coordination polyelectrolyte, Fe(II)-metalloviologen(FEN), was prepared by the reaction of Fe(II) with a novel bisterpyridine ligand. As active components, FENs could be assembled into electrochromic multilayer films with negative charged polystyrene sulfate(PSS) by the sequential deposition layer-by-layer technique. Numerous analytical instruments, such as UV-Vis spectroscopy, atomic force microscopy(AFM), tunneling electron microscopy(TEM), zeta-potential measurement and electrochemical measurement have been utilized to characterize their morphology, optical and electrochromic properties. It has been observed that as-prepared films exhibited multi-colour changes by triggering with different potentials. However, the low optical contrast of multilayer films would limit their further applications. In order to overcome this problem, semiconductor TiO2 nanoparticles(TiO2) were incorporated into FEN multilayers by layer-by-layer approach. By carefully optimizing the film structure, as-resulted hybrid films containing FEN, TiO2 and PSS exhibited high optical contrast, suitable response time and long-term stability. Such hybrid films should be promising candidates to meet the requirements for developing flexible displays and electrochromic devices.展开更多
Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the ...Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the current values of sputtering target. The effects of n(Zn)/n(Ti) on the microstructures of TiO2-ZnO films were investigated by SEM, AFM, Raman and XPS, and their photocatalytic decomposition of methyl orange solutions was evaluated. The results show that an increase in n(Zn)/n(Ti) typically results in a decrease in the grain size of composite films firstly and then an increase of grain size, while an increase in n(Zn)/n(Ti) leads to an increase in film roughness firstly and then a decrease in film roughness. Both grain size and roughness of TiO2-ZnO films reach the maximum and minimum at n(Zn)/n(Ti) of 1/9.3, respectively. The n(Zn)/n(Ti) shows little effect on the valences of Zn and Ti elements, which mainly exist in the form of TiO2 and ZnO phases. The n(Zn)/n(Ti) has influence on the amount of anatase/rutile TiO2 heterojunction in the film. With increase of the n(Zn)/n(Ti), the absorption intensity of the composite film increases and the absorption region extends to 450 nm, which is redshifted as much as 150 nm in comparison with the pure TiO2 films. However, the photocatalytic abilities of heterogeneous composite films do not depend on the n(Zn)/n(Ti) but rather on the microstructures of the TiO2-ZnO composite films. Degradation rate of the film reaches the maximum and the photocatalytic decomposition of pollutants works best when n(Zn)/n(Ti)=1:9.3.展开更多
In order to clarify the respective role of the UV light, catalyst, external bias as well as their combined effects on the photodegradation process and to clarify the photocatalytic mechanism under different experiment...In order to clarify the respective role of the UV light, catalyst, external bias as well as their combined effects on the photodegradation process and to clarify the photocatalytic mechanism under different experimental conditions, a series of experiments were conducted in a shallow pond photoreactor with an effective volume of 100 mL using TiO 2/Ti thin film prepared by anodization as photocatalyst. A 300W UV lamp( E max =365 nm)was used as side light source. The effect of light intensity on photocatalysis was also conducted. The results show that photocatalytic oxidation is an effective method for phenol removal from waters. The degradation rate can be improved by applying an anodic bias to the TiO 2/Ti film electrode, phenol can not be decomposed under only 365 nm UV light irradiation even in the presence of hydrogen peroxide. In the range of our research, the phenol removal rate can be described in terms of pseudo first order kinetics.展开更多
In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performanc...In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.91123029, 61077066 and 50902128)the Natural Science Foundation of Jilin Province, China(No.20101534)
文摘Metallosupramolecular coordination polyelectrolyte, Fe(II)-metalloviologen(FEN), was prepared by the reaction of Fe(II) with a novel bisterpyridine ligand. As active components, FENs could be assembled into electrochromic multilayer films with negative charged polystyrene sulfate(PSS) by the sequential deposition layer-by-layer technique. Numerous analytical instruments, such as UV-Vis spectroscopy, atomic force microscopy(AFM), tunneling electron microscopy(TEM), zeta-potential measurement and electrochemical measurement have been utilized to characterize their morphology, optical and electrochromic properties. It has been observed that as-prepared films exhibited multi-colour changes by triggering with different potentials. However, the low optical contrast of multilayer films would limit their further applications. In order to overcome this problem, semiconductor TiO2 nanoparticles(TiO2) were incorporated into FEN multilayers by layer-by-layer approach. By carefully optimizing the film structure, as-resulted hybrid films containing FEN, TiO2 and PSS exhibited high optical contrast, suitable response time and long-term stability. Such hybrid films should be promising candidates to meet the requirements for developing flexible displays and electrochromic devices.
基金Project (2010JQ6008) supported by the Natural Science Foundation of Shaanxi Province,China
文摘Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the current values of sputtering target. The effects of n(Zn)/n(Ti) on the microstructures of TiO2-ZnO films were investigated by SEM, AFM, Raman and XPS, and their photocatalytic decomposition of methyl orange solutions was evaluated. The results show that an increase in n(Zn)/n(Ti) typically results in a decrease in the grain size of composite films firstly and then an increase of grain size, while an increase in n(Zn)/n(Ti) leads to an increase in film roughness firstly and then a decrease in film roughness. Both grain size and roughness of TiO2-ZnO films reach the maximum and minimum at n(Zn)/n(Ti) of 1/9.3, respectively. The n(Zn)/n(Ti) shows little effect on the valences of Zn and Ti elements, which mainly exist in the form of TiO2 and ZnO phases. The n(Zn)/n(Ti) has influence on the amount of anatase/rutile TiO2 heterojunction in the film. With increase of the n(Zn)/n(Ti), the absorption intensity of the composite film increases and the absorption region extends to 450 nm, which is redshifted as much as 150 nm in comparison with the pure TiO2 films. However, the photocatalytic abilities of heterogeneous composite films do not depend on the n(Zn)/n(Ti) but rather on the microstructures of the TiO2-ZnO composite films. Degradation rate of the film reaches the maximum and the photocatalytic decomposition of pollutants works best when n(Zn)/n(Ti)=1:9.3.
文摘In order to clarify the respective role of the UV light, catalyst, external bias as well as their combined effects on the photodegradation process and to clarify the photocatalytic mechanism under different experimental conditions, a series of experiments were conducted in a shallow pond photoreactor with an effective volume of 100 mL using TiO 2/Ti thin film prepared by anodization as photocatalyst. A 300W UV lamp( E max =365 nm)was used as side light source. The effect of light intensity on photocatalysis was also conducted. The results show that photocatalytic oxidation is an effective method for phenol removal from waters. The degradation rate can be improved by applying an anodic bias to the TiO 2/Ti film electrode, phenol can not be decomposed under only 365 nm UV light irradiation even in the presence of hydrogen peroxide. In the range of our research, the phenol removal rate can be described in terms of pseudo first order kinetics.
文摘In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.