Different semiconductive SiC foam supports were prepared by varying the sintering temperature and atmosphere, and with or without alkaline solution treatment and high temperature oxidation following a macromolecule py...Different semiconductive SiC foam supports were prepared by varying the sintering temperature and atmosphere, and with or without alkaline solution treatment and high temperature oxidation following a macromolecule pyrogenation combined with reaction bonding method. Nano-TiO2 particles were immobilized onto these SiC foam supports by a composite sol-gel method. The phase, surface morphology, the type of conduction and the photocatalytic activity of the TiO2-SiC composite photocatalysts were studied. The TiO2 coated on p-type Si-free SiC support showed the highest photocatalytic efficiency in degradation of 4- aminobenzenesulfonic acid (4-ABS) in aqueous solution as compared to that coated on n-type SiC support and p-type SiC supports with residual Si or Si02 on the surface. The result showed that the TiO2 coatings immobilized on p-type semiconductive SiC foam supports exhibited obviously higher photocatalytic activity in comparison to that coated on n-type SiC foam support. The p-n heterojunctions formed between the p-type SiC supports and n-type TiO2 coatings might be able to account for the better charge separation and transfer as well as the photocatalytic activity of the TiO2-SiC composite photocatalyst.展开更多
In this paper the hydrogen and hydrocarbon gas sensing performance of the Pt/Catalysed TiO_2/SiC devices have been studied.The TiO_2 metal oxide thin films were catalytically modified employing Pt and Pd.The electrica...In this paper the hydrogen and hydrocarbon gas sensing performance of the Pt/Catalysed TiO_2/SiC devices have been studied.The TiO_2 metal oxide thin films were catalytically modified employing Pt and Pd.The electrical properties of the fabricated devices were studied by measuring their capacitance-voltage (C-V),conductance-voltage (G-V) and dynamic response characteristics.The sensor's response as a function of operating temperature (25℃to 700℃) and concentrations less than 1% of the analyte gases have been investigated.The sensitivity of the Pt catalysed TiO_2 sensor was found to be superior when compared to TiO_2 catalysed with Pd.A voltage shift of 3.2 V for 1% propene at 420℃and 2.8 V for 1% hydrogen at 250℃in an ambient containing synthetic air was recorded for the Pt catalysed TiO_2 sensor.The response of Pt catalysed TiO_2 sensor was found to be approximately 4 times larger when compared to the non catalysed counterpart.展开更多
Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface m...Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.展开更多
Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SE...Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SEM analyses revealed that the surface of the film did not exhibit cracks in the presence of TTIP as a binder in the TiO2 P25 suspension. The following parameters were studied in continuous mode operation: the flow rate in the reactor, the initial concentration of the paraquat, the pH of the solution, the weight of photocatalytic material with the number of foams in the reactor and the weight of the catalyst deposited onto the support. The results showed that by working under optimal operating conditions at natural pH (pH = 6.7), low paraquat (Co = 10 ppm), and flow (26 mL/min), we recorded approximately (43.16 ± 1.00)% oxidation of paraquat and a decrease in total organic carbon (TOC) of (27.13 ± 1.00)% after about 70 minutes. The apparent rate constant is in the order of (0.0656 ± 0.0010) min-1. In addition, by increasing the amount of β-SiC foams coated with TiO2, we improve the degradation of paraquat in the same order. The study of aging of the material showed its stability over time. However, photocatalytic activity was limited after 20 minutes of UV irradiation due to the limitation of the diffusion of the paraquat molecules towards the surface of the photocatalyst. As an outcome, we obtained an efficient TiO2/β-SiC material for photocatalytic degradation of organic compounds in water.展开更多
In the toluene solution of the precursor Polycarbosilane (PCS) containing low- molecular-mass additive Ti(OC4H9)4, TiO2/SiC nanometer-scale functional compositional film with the surface TiO2 layer on CF was formed in...In the toluene solution of the precursor Polycarbosilane (PCS) containing low- molecular-mass additive Ti(OC4H9)4, TiO2/SiC nanometer-scale functional compositional film with the surface TiO2 layer on CF was formed in situ by means of polymer-derived precursors. The effects of Ti (OC4H9)4 concentrations and the maturating time were studied on the densification and TiO2 particle size of surface layer. The compositions of film were TiO2 and SiC crystal by XRD. According to the results of ESCA analysis, Ti(OC4H9)4 compound oozed gradiently from the pre-ceramic PCS to the surface layer after maturating time of 100 h. In the conditions of 45wt% Ti (OC4H9)4 and 100 h maturation, the nanometer-scale TiO2 particles on continuous surface layer were formed by SEM photographs. The nanometer-scale TiO2/SiC functional compositional film can modify the resistance to oxidation of carbon fiber.展开更多
基金supported by the National Key Technology R&D Program of China(Grant No.2011BAE03B07)
文摘Different semiconductive SiC foam supports were prepared by varying the sintering temperature and atmosphere, and with or without alkaline solution treatment and high temperature oxidation following a macromolecule pyrogenation combined with reaction bonding method. Nano-TiO2 particles were immobilized onto these SiC foam supports by a composite sol-gel method. The phase, surface morphology, the type of conduction and the photocatalytic activity of the TiO2-SiC composite photocatalysts were studied. The TiO2 coated on p-type Si-free SiC support showed the highest photocatalytic efficiency in degradation of 4- aminobenzenesulfonic acid (4-ABS) in aqueous solution as compared to that coated on n-type SiC support and p-type SiC supports with residual Si or Si02 on the surface. The result showed that the TiO2 coatings immobilized on p-type semiconductive SiC foam supports exhibited obviously higher photocatalytic activity in comparison to that coated on n-type SiC foam support. The p-n heterojunctions formed between the p-type SiC supports and n-type TiO2 coatings might be able to account for the better charge separation and transfer as well as the photocatalytic activity of the TiO2-SiC composite photocatalyst.
文摘In this paper the hydrogen and hydrocarbon gas sensing performance of the Pt/Catalysed TiO_2/SiC devices have been studied.The TiO_2 metal oxide thin films were catalytically modified employing Pt and Pd.The electrical properties of the fabricated devices were studied by measuring their capacitance-voltage (C-V),conductance-voltage (G-V) and dynamic response characteristics.The sensor's response as a function of operating temperature (25℃to 700℃) and concentrations less than 1% of the analyte gases have been investigated.The sensitivity of the Pt catalysed TiO_2 sensor was found to be superior when compared to TiO_2 catalysed with Pd.A voltage shift of 3.2 V for 1% propene at 420℃and 2.8 V for 1% hydrogen at 250℃in an ambient containing synthetic air was recorded for the Pt catalysed TiO_2 sensor.The response of Pt catalysed TiO_2 sensor was found to be approximately 4 times larger when compared to the non catalysed counterpart.
基金supported by the Science Foun-dation of Educational Commission and Provincial Key Laboratory Program of Liaoning Province of China(Grant No.2008593 and CL-200902)~~
文摘Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.
文摘Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SEM analyses revealed that the surface of the film did not exhibit cracks in the presence of TTIP as a binder in the TiO2 P25 suspension. The following parameters were studied in continuous mode operation: the flow rate in the reactor, the initial concentration of the paraquat, the pH of the solution, the weight of photocatalytic material with the number of foams in the reactor and the weight of the catalyst deposited onto the support. The results showed that by working under optimal operating conditions at natural pH (pH = 6.7), low paraquat (Co = 10 ppm), and flow (26 mL/min), we recorded approximately (43.16 ± 1.00)% oxidation of paraquat and a decrease in total organic carbon (TOC) of (27.13 ± 1.00)% after about 70 minutes. The apparent rate constant is in the order of (0.0656 ± 0.0010) min-1. In addition, by increasing the amount of β-SiC foams coated with TiO2, we improve the degradation of paraquat in the same order. The study of aging of the material showed its stability over time. However, photocatalytic activity was limited after 20 minutes of UV irradiation due to the limitation of the diffusion of the paraquat molecules towards the surface of the photocatalyst. As an outcome, we obtained an efficient TiO2/β-SiC material for photocatalytic degradation of organic compounds in water.
文摘In the toluene solution of the precursor Polycarbosilane (PCS) containing low- molecular-mass additive Ti(OC4H9)4, TiO2/SiC nanometer-scale functional compositional film with the surface TiO2 layer on CF was formed in situ by means of polymer-derived precursors. The effects of Ti (OC4H9)4 concentrations and the maturating time were studied on the densification and TiO2 particle size of surface layer. The compositions of film were TiO2 and SiC crystal by XRD. According to the results of ESCA analysis, Ti(OC4H9)4 compound oozed gradiently from the pre-ceramic PCS to the surface layer after maturating time of 100 h. In the conditions of 45wt% Ti (OC4H9)4 and 100 h maturation, the nanometer-scale TiO2 particles on continuous surface layer were formed by SEM photographs. The nanometer-scale TiO2/SiC functional compositional film can modify the resistance to oxidation of carbon fiber.