A series of TiO2/Bi2O3 heterojunction microfibers have been fabricated using cotton fibers as bio-templates, and characterized by XRD, SEM and UV-Vis techniques. Results reveal that Bi2O3 in the TiO2/Bi2O3 sample is a...A series of TiO2/Bi2O3 heterojunction microfibers have been fabricated using cotton fibers as bio-templates, and characterized by XRD, SEM and UV-Vis techniques. Results reveal that Bi2O3 in the TiO2/Bi2O3 sample is assigned to monoclinic and tetragonal mix-crystal phase. Fibers lengths can reach several micrometers and diameters range from 0.5 μm to 3 μm. Compared with pure TiO2 and Bi2O3, TiO2/Bi2O3 samples display better absorption in visible light region. Photocatalytic activity was evaluated by degradation of MB under visible light irradiation. TiO2/Bi2O3 microfibers exhibite much higher activity than pure TiO2 and Bi2O3, and 22.84%TiO2/Bi2O3 can achieve the decomposition of about 95%MB, which is attributed to synergistic effects of the strong visible-light absorption of TiO2/Bi2O3 microfibers and the heterojunction formed between TiO2 and Bi2O3.展开更多
TiO2 film modified by Bi2O3 microgrid array was successfully fabricated by using a microsphere lithography method.The structure and morphology of TiO2 film,Bi2O3 film and TiO2 film/Bi2O3 microgrid heterojunction were ...TiO2 film modified by Bi2O3 microgrid array was successfully fabricated by using a microsphere lithography method.The structure and morphology of TiO2 film,Bi2O3 film and TiO2 film/Bi2O3 microgrid heterojunction were characterized through X-ray diffraction,atomic force microscopy and scanning electron microscopy.The optical transmittance spectra and the photocatalytic degradation capacity of these samples to rhodamine B were determined via ultraviolet-visible spectroscopy.The results indicated that the coupled system showed higher photocatalytic activity than pure TiO2 and Bi2O3 films under xenon lamp irradiation.The enhancement of the photocatalytic activity was ascribed to the special structure,which could improve the separation of photo-generated electrons and holes,enlarge the surface area and extend the response range of TiO2 film from ultraviolet to visible region.展开更多
基金V. ACKNOWLEDGEMENTS This work was supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.2013JK0690), and the Shaanxi Province Natural Science Foundation (No.2013JM2013), the National Natural Science Foundation of China (No.21203160), and the Special Research Fund of Xianyang Normal University (No. 11XSYK204).
文摘A series of TiO2/Bi2O3 heterojunction microfibers have been fabricated using cotton fibers as bio-templates, and characterized by XRD, SEM and UV-Vis techniques. Results reveal that Bi2O3 in the TiO2/Bi2O3 sample is assigned to monoclinic and tetragonal mix-crystal phase. Fibers lengths can reach several micrometers and diameters range from 0.5 μm to 3 μm. Compared with pure TiO2 and Bi2O3, TiO2/Bi2O3 samples display better absorption in visible light region. Photocatalytic activity was evaluated by degradation of MB under visible light irradiation. TiO2/Bi2O3 microfibers exhibite much higher activity than pure TiO2 and Bi2O3, and 22.84%TiO2/Bi2O3 can achieve the decomposition of about 95%MB, which is attributed to synergistic effects of the strong visible-light absorption of TiO2/Bi2O3 microfibers and the heterojunction formed between TiO2 and Bi2O3.
基金supported by the National High Technology Research and Development Program of China under Grant 2009AA03Z428the National Natural Science Foundation of China under Grant No. 50872005the National Basic Research Program of China under Grant 2007CB613306
文摘TiO2 film modified by Bi2O3 microgrid array was successfully fabricated by using a microsphere lithography method.The structure and morphology of TiO2 film,Bi2O3 film and TiO2 film/Bi2O3 microgrid heterojunction were characterized through X-ray diffraction,atomic force microscopy and scanning electron microscopy.The optical transmittance spectra and the photocatalytic degradation capacity of these samples to rhodamine B were determined via ultraviolet-visible spectroscopy.The results indicated that the coupled system showed higher photocatalytic activity than pure TiO2 and Bi2O3 films under xenon lamp irradiation.The enhancement of the photocatalytic activity was ascribed to the special structure,which could improve the separation of photo-generated electrons and holes,enlarge the surface area and extend the response range of TiO2 film from ultraviolet to visible region.