As efficient water treatment agents, a novel series of rectorite-based ZnO and TiO2 hybrid composites(REC/ZnO/TiO2) were synthesized and characterized in this study. Effects of experimental parameters including TiO2...As efficient water treatment agents, a novel series of rectorite-based ZnO and TiO2 hybrid composites(REC/ZnO/TiO2) were synthesized and characterized in this study. Effects of experimental parameters including TiO2 mass ratio, solution p H and catalyst dosage on the removal of methyl blue(MB) were also conducted. The presence of a little mass ratio(2%-6%) of TiO2 highly promoted the photoactivity of REC/ZnO/TiO2 in removal of MB dye from aqueous solution, in which ZnO and REC played a role of photocatalyst and adsorbent. The promotion effects of TiO2 may result from the accelerated separation of electron-hole on ZnO. The observed kinetic constant for the degradation of MB over REC/ZnO and REC/ZnO/TiO2 were 0.015 and 0.038 min^(-1), respectively. The degradation kinetics of MB dye, which followed the Langmuir–Hinshelwood model, had a reaction constant of 0.17 mg/(L min). The decrease of removal ratio of MB after five repetitive experiments was small, indicating REC/ZnO/TiO2 has great potential as an effective and stable catalyst.展开更多
TiO2 nanostructures were fabricated by a reaction of Ti foils in H2O2 solution at mild temperature, Porous TiO2 nanostructurcs, well adhered to Ti foil surfaces, were formed at 80 ℃ in 10 rain, and then flower- like ...TiO2 nanostructures were fabricated by a reaction of Ti foils in H2O2 solution at mild temperature, Porous TiO2 nanostructurcs, well adhered to Ti foil surfaces, were formed at 80 ℃ in 10 rain, and then flower- like and rod nanostructures formed in succession after a longer reaction time. Samples prepared at 80 ℃ for 4 h arc amorphous, and anatase-dominated crystal phase emerged in the sample prepared for as long as 10 h. Almost pure anatase phase were obtained in TiO2 nanostructures by annealing the samples at a temperature of 300 ℃. Photoeatalysis of the TiO2 nanostructures was characterized by the degradation of RhB dye molecules in an aqueous solution exposed to ultraviolet light. Results show a 7 cm^2 annealed TiO2 flower-like nanostrueture having the degradation rate of RhB as fast as 29.8 times that of the dye solution exposed to ultraviolet light alone.展开更多
The rational design and construction of heterojunction structure is an effective strategy to improve the photocatalytic performance.Herein,a series of BiOBr nanosheets-immobilized TiO2/Ti3C2Tx MXene hybrid materials w...The rational design and construction of heterojunction structure is an effective strategy to improve the photocatalytic performance.Herein,a series of BiOBr nanosheets-immobilized TiO2/Ti3C2Tx MXene hybrid materials with heterojunction structure were synthesized by a facial one-step hydrothermal method.The ternary composites show outstanding performance as photocatalysts for the degradation of rhodamine B due to the optimized synergetic effects of BiOBr,TiO2 and Ti3C2Tx.The improved photocatalytic performance is remarkably attributed to the construction of a heterojunction between TiO2 and BiOBr due to their well-matching of energy band position,which can enhance the absorption for visible light and promote the transfer of photo-generated charge carriers.Moreover,Ti3C2Tx acts as an electron trap to further accelerate the separation of photo-generated electrons and holes.展开更多
Hierarchically porous anatase Ti02 microspheres composited with carbonaceous species (TCS) have been successfully fabricated by a one-step template-free solvothermal method, combined with subsequent low temperature ...Hierarchically porous anatase Ti02 microspheres composited with carbonaceous species (TCS) have been successfully fabricated by a one-step template-free solvothermal method, combined with subsequent low temperature dried process. In this configuration, the TCS microspheres are constructed by the intercon- nected porous nanosheets, which are further assembled with abundant nanoparticles and carbonaceous species. Such composite microspheres possess a large specific surface area of 337 m2 g-l, uniform mesopores of 3.37 nm and high total pore volumes of 0.275 cm3 g-1. The materials exhibit the enhanced photocatalytic properties and stability for degradation of rhodamine B (RhB) under visible-light irradiation. The enhanced photocatalytic degradation performance may be ascribed to their abundant porous structure, large specific surface area and the unique assist-function of the carbonaceous species.展开更多
Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that o...Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.展开更多
Fe-doped TiO2 was prepared by the sol gel method and characterized by X-ray diffraction. All the Fe-doped TiO2 were composed of an anatase crystal form. The activity of the Fe-doped TiO2 for the degradation of the ges...Fe-doped TiO2 was prepared by the sol gel method and characterized by X-ray diffraction. All the Fe-doped TiO2 were composed of an anatase crystal form. The activity of the Fe-doped TiO2 for the degradation of the gesaprim commercial herbicide (which contains atrazine as active compound and formulating agents) was studied by varying the iron content during UV (15 W), visible light and solar irradiations. The visible light came from commercial saving energy lamps (13, 15 and 20 Watts). The gesaprim degradation rate depended on the iron content in the photo catalyst. The Fe-doped TiO2 (0.5% by weight of TiO2) showed higher TOC removal under visible light and was more active than the undoped TiO2 photo catalyst under the light irradiation sources tested. Over 90% of chemical oxygen demand abatement was achieved with both UV and visible light but less time was required to decrease the chemical oxygen demand content by using the catalyst doped with iron at 0.5% under visible light. It was observed that the degradation of gesaprim increased by increasing the iron content in the catalyst under visible light.展开更多
TiO2/Bi4 Ti3 O12 hybrids have been widely prepared as promising photocatalysts for decomposing organic contaminations.However,the insufficient visible light absorption and low charge separation efficiency lead to thei...TiO2/Bi4 Ti3 O12 hybrids have been widely prepared as promising photocatalysts for decomposing organic contaminations.However,the insufficient visible light absorption and low charge separation efficiency lead to their poor photocatalytic activity.Herein,a robust methodology to construct novel TiO2/Bi4 Ti3 O12/MoS2 core/shell structures as visible light photocatalysts is presented.Homogeneous bismuth oxyiodide(BiOI) nanoplates were immobilized on electrospun TiO2 nanofiber surface by successive ionic layer adsorption and reaction(SILAR) method.TiO2/Bi4 Ti3 O12 core/shell nanofibers were conveniently prepared by partial conversion of TiO2 to high crystallized Bi4 Ti3 O12 shells through a solid-state reaction with BiOI nanoplates,which is accompanied with certain transition of TiO2 from anatase to rutile phase.Afterwards,MoS2 nanosheets with several layers thick were uniform decorated on the TiO2/Bi4 TiO3 O12 fiber surface resulting in TiO2/Bi4 Ti3 O12/MoS2 structures.Significant enhancement of visible light absorption and photo-generated charge separation of TiO2/Bi4 Ti3 O12 were achieved by introduction of MoS2.As a result,the optimized TiO2/Bi4 Ti3 O12/MoS2-2 presents 60% improvement for photodegrading RhB after 120 min irradiation under visible light and 3 times higher of apparent reaction rate constant in compared with the TiO2/Bi4 Ti3 O12.This synthetic method can also be used to establish other photocatalysts simply at low cost,therefore,is suitable for practical applications.展开更多
The steel industry produces many byproducts, requiring extensive land for storage and causing significant environmental contamination. Industrial effluents discharged into water bodies negatively impact both aquatic e...The steel industry produces many byproducts, requiring extensive land for storage and causing significant environmental contamination. Industrial effluents discharged into water bodies negatively impact both aquatic ecosystems and human health. To solve this problem, this study synthesized a composite of titanium dioxide (TiO2) and steel slag nanocomposites (SSNC) at a 1:2 mass ratio to create a robust photocatalyst for the treatment of synthetic wastewater. The efficacy of this catalyst in degrading various dye pollutants, including methylene blue (MB), was tested under simulated solar light conditions. Comprehensive analyses were conducted to assess the physical and chemical characteristics, crystalline structure, energy gap, and point of zero charge of the composite. The TiO2-SSNC composite catalyst exhibited excellent stability, with a point of zero charge at 8.342 and an energy gap of 2.4 eV. The degradation process conformed to pseudo-first-order kinetics. Optimization of operational parameters was achieved through the response surface methodology. Reusability tests demonstrated that the TiO2-SSNC composite catalyst effectively degraded up to 93.41% of MB in the suspended mode and 92.03% in the coated mode after five cycles. Additionally, the degradation efficiencies for various dyes were significant, highlighting the potential of the composite for broad applications in industrial wastewater treatment. This study also explored the degradation mechanisms and identified byproducts, establishing a pathway for contaminant breakdown. The cost-benefit analysis revealed a total cost of 0.842 8 USD per cubic meter for each treatment activity, indicating low operational and production costs. These findings underscore the promise of the TiO2-SSNC composite as a cost-effective and efficient alternative for wastewater purification.展开更多
Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of pho...Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of photogenerated charge carriers.Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult.In this study,we present a novel approach combining molybdenum(Mo) monoatomic doping and size engineering to produce a series of Mo-ReS_(2) quantum dots(MR QDs) with controllable dimensions.High-resolution structural characterization,first-principle calculations,and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry,thereby improving the piezoelectric properties.The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency,leading to optimized photocatalytic performance.Additionally,the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals,substantially boosting photo-sterilization efficiency.Our results demonstrate the elimination of 99.95% of Escherichia coli and 100.00% of Staphylococcus aureus within 30 min.Furthermore,we developed a self-purification system simulating water drainage,utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs,achieving piezoelectric synergistic photodegradation.This innovative approach provides a more environmentally friendly and economical method for water self-purification,paving the way for advanced water treatment technologies.展开更多
Peroxymonosulfate(PMS)is commonly used in advanced oxidation processes to degrade organic pollutants in wastewater.In this work,to obtain better PMS activation efficiency,Bi_(4)O_(5)Br_(2)/BCZT(BBT)piezoelectric photo...Peroxymonosulfate(PMS)is commonly used in advanced oxidation processes to degrade organic pollutants in wastewater.In this work,to obtain better PMS activation efficiency,Bi_(4)O_(5)Br_(2)/BCZT(BBT)piezoelectric photocatalyst was designed.Abundant active radicals produced by BBT under visible light irradiation and ultrasonic vibration were used to activate PMS,thereby achieving rapid degradation of high concentration pollutants.With the introduction of BCZT,the catalyst has a strong internal electric field and three-dimensional lamellar structure,which promotes the separation and transfer of electrons and holes.It is worth noting that under optimal reaction conditions,the degradation rate of ARB reached 93%by BBT15 within 10 min.The catalytic experiment combined with the piezoelectric performance test results revealed the key role of piezoelectric photocatalytic reaction in PMS activation.This provides an important prospect for PMS to effectively deal with the degradation of high concentrations of organic pollutants.展开更多
The mass production and widespread use of Pharmaceuticals and Personal Care Products(PPCPs)have posed a serious threat to the water environment and public health.In this work,a green metal-based Metal Organic Framewor...The mass production and widespread use of Pharmaceuticals and Personal Care Products(PPCPs)have posed a serious threat to the water environment and public health.In this work,a green metal-based Metal Organic Framework(MOF)Bi-NH_(2)-BDC was prepared and characterized,and the adsorption characteristics of Bi-NH_(2)-BDCwere investigated with typical PPCPs-diclofenac sodium(DCF).It was found that DCF mainly covered the adsorbent surface as a single molecular layer,the adsorption reaction was a spontaneous,entropyincreasing exothermic process and the adsorption mechanisms between Bi-NH_(2)-BDC and DCF were hydrogen bonding,π-πinteractions and electrostatic interactions.In addition,Bi-NH_(2)-BDC also had considerable photocatalytic properties,and its application in adsor-bent desorption treatment effectively solved the problem of secondary pollution,achieving a green and sustainable adsorption desorption cycle.展开更多
The production of renewable methanol(CH_(3)OH)via the photocatalytic hydrogenation of CO_(2) is an ideal method to ameliorate energy shortages and mitigate CO_(2) emissions:however,the highly selective synthesis of me...The production of renewable methanol(CH_(3)OH)via the photocatalytic hydrogenation of CO_(2) is an ideal method to ameliorate energy shortages and mitigate CO_(2) emissions:however,the highly selective synthesis of methanol at atmospheric pressure remains challenging owing to the competing reverse water-gas shift(RWGS)reaction.Herein,we present a novel approach for the synthesis of CH_(3)OH via photocatalytic CO_(2) hydrogenation using a catalyst featuring highly dispersed Au nanoparticles loaded on oxygen vacancy(OV)-rich molybdenum dioxide(MoO_(2)),resulting in a remarkable selectivity of 43.78%.The active sites in the Au/MoO_(2) catalyst are high-density Au-oxygen vacancies,which synergistically promote the tandem methanol synthesis via an initial RWGS reaction and subsequent CO hydrogenation.This work provides comprehensive insights into the design of metal-vacancy synergistic sites for the highly selective photocatalytic hydrogenation of CO_(2) to CH_(3)OH.展开更多
Herein,a simple and effective outer-surface interactions assisted supramolecular hierarchical assembly has been first exploited to uniformly distribute tungstosilicic acid(TSA)inside the porous structure of cucurbit[1...Herein,a simple and effective outer-surface interactions assisted supramolecular hierarchical assembly has been first exploited to uniformly distribute tungstosilicic acid(TSA)inside the porous structure of cucurbit[10]uril-based single-layer 2D supramolecular-organic-frameworks(Q[10]-SOFs)in water.Importantly,the 2D Q[10]-SOFs can further serve as light harvesting antenna,achieving fast energy transfer to the embedded redox-active TSA upon photoexcitation,resulting in efficient visible light-driven selective oxidation of benzyl alcohols into the corresponding aldehydes in high yield at room temperature.Further studies revealed that the integrated of 2D Q[10]-SOFs and TSA played a key role in the catalytic process,due to the presence of a novel stepwise electron transfer route in the single-layer hybrid 2D structures.展开更多
Ce-β-Bi_(2)O_(3)/AgI was prepared using solvothermal calcination and in-situ deposition methods.The introduction of Ce can inhibit the conversion of Bi_(2)O_(3)fromβtoαphase at high temperatures,promoting the forma...Ce-β-Bi_(2)O_(3)/AgI was prepared using solvothermal calcination and in-situ deposition methods.The introduction of Ce can inhibit the conversion of Bi_(2)O_(3)fromβtoαphase at high temperatures,promoting the formation of oxygen vacancies(OVs)in the photocatalyst.OVs can adsorb more dissolved oxygen to promote the formation rate of·O^(-)_(2).Moreover,the interaction between Ce-Bi_(2)O_(3)and AgI results in the formation of Z-scheme heterojunctions,which can broaden the light absorption region,facilitate photogenerated carrier separation and transfer and enhance the ability to produce more active oxygen species(ROS).The morphology,crystal,element distribution and photo-electric chemical properties of the Ce-Bi_(2)O_(3)/AgI were analyzed,and the result shows that the optimal ratio of Ce-Bi_(2)O_(3)/AgI photocatalyst achieves a removal rate of 88.63%(180 min)of tetracycline(TC)(20 mg/L)and 100%(120 min)of methyl orange(MO)(20 mg/L).This work clarified the photocatalytic degradation mechanism,providing a promising avenue for developing photocatalytic composites by rare earth metal doping in environme ntal remediation applications.展开更多
The problem of water depollution is gaining importance, especially as regulatory standards concerning drinking water are increasingly strict. The different industries (textile industries) generate chemically stable po...The problem of water depollution is gaining importance, especially as regulatory standards concerning drinking water are increasingly strict. The different industries (textile industries) generate chemically stable pollutants such as methyl orange which make their degradation difficult. It is therefore necessary to find new, more effective techniques for the treatment of these discharges. Among the different solutions proposed to deal with this problem, we find advanced oxidation processes (POAs) which are clean and promising technologies in the field of wastewater depollution. In this regard, heterogeneous photocatalysis was used in an aqueous suspension of titanium oxide (TiO2) using a ultraviolet (UV) lamp as artificial radiation. The objective of this work is to study the influence of some operating parameters such as: the catalyst mass, the initial pollutant concentration, the volume of the solution and the pH of the solution, were examined. The results obtained showed that this photocatalyst made it possible to degrade 99.85% of the initial concentration of methyl orange (10 ppm), after 240 min of irradiation with an optimal mass of 0.50 g of TiO2 for a volume of 200 mL of methyl orange solution at pH = 3.0.展开更多
基金Funded by the National High Technology Research and Development Program of China(No.2007AA06Z418)the National Natural Science Foundation of China(Nos.20577036,20777058,20977070)+2 种基金the National Natural Science Foundation of Hubei Province,China(No.2015CFA137)the Open Fund of Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory(Wuhan University)the Fund of Eco-environment Technology R&D and Service Center(Wuhan University)
文摘As efficient water treatment agents, a novel series of rectorite-based ZnO and TiO2 hybrid composites(REC/ZnO/TiO2) were synthesized and characterized in this study. Effects of experimental parameters including TiO2 mass ratio, solution p H and catalyst dosage on the removal of methyl blue(MB) were also conducted. The presence of a little mass ratio(2%-6%) of TiO2 highly promoted the photoactivity of REC/ZnO/TiO2 in removal of MB dye from aqueous solution, in which ZnO and REC played a role of photocatalyst and adsorbent. The promotion effects of TiO2 may result from the accelerated separation of electron-hole on ZnO. The observed kinetic constant for the degradation of MB over REC/ZnO and REC/ZnO/TiO2 were 0.015 and 0.038 min^(-1), respectively. The degradation kinetics of MB dye, which followed the Langmuir–Hinshelwood model, had a reaction constant of 0.17 mg/(L min). The decrease of removal ratio of MB after five repetitive experiments was small, indicating REC/ZnO/TiO2 has great potential as an effective and stable catalyst.
基金supported by the National Natural Science Foundation of China(No.10574122 and No.60376008).
文摘TiO2 nanostructures were fabricated by a reaction of Ti foils in H2O2 solution at mild temperature, Porous TiO2 nanostructurcs, well adhered to Ti foil surfaces, were formed at 80 ℃ in 10 rain, and then flower- like and rod nanostructures formed in succession after a longer reaction time. Samples prepared at 80 ℃ for 4 h arc amorphous, and anatase-dominated crystal phase emerged in the sample prepared for as long as 10 h. Almost pure anatase phase were obtained in TiO2 nanostructures by annealing the samples at a temperature of 300 ℃. Photoeatalysis of the TiO2 nanostructures was characterized by the degradation of RhB dye molecules in an aqueous solution exposed to ultraviolet light. Results show a 7 cm^2 annealed TiO2 flower-like nanostrueture having the degradation rate of RhB as fast as 29.8 times that of the dye solution exposed to ultraviolet light alone.
基金supported by the National Natural Science Foundation of China (Nos.51472186,51902232,51402221)the China Scholarship Council Fund (No.201708420210)。
文摘The rational design and construction of heterojunction structure is an effective strategy to improve the photocatalytic performance.Herein,a series of BiOBr nanosheets-immobilized TiO2/Ti3C2Tx MXene hybrid materials with heterojunction structure were synthesized by a facial one-step hydrothermal method.The ternary composites show outstanding performance as photocatalysts for the degradation of rhodamine B due to the optimized synergetic effects of BiOBr,TiO2 and Ti3C2Tx.The improved photocatalytic performance is remarkably attributed to the construction of a heterojunction between TiO2 and BiOBr due to their well-matching of energy band position,which can enhance the absorption for visible light and promote the transfer of photo-generated charge carriers.Moreover,Ti3C2Tx acts as an electron trap to further accelerate the separation of photo-generated electrons and holes.
基金financially supported by the National Natural Science Foundation of China(Nos.61271126,21547012 and 21305033)the Program for Innovative Research Team in University(No.IRT-1237)+2 种基金the Program for Science and Technology Project of Heilongjiang province(Nos.B201414 and B2015008)the Heilongjiang Educational Department(No.2013TD002,2011CJHB006,12531506)the Youth Foundation of Harbin(No.2015QQQXJ047)
文摘Hierarchically porous anatase Ti02 microspheres composited with carbonaceous species (TCS) have been successfully fabricated by a one-step template-free solvothermal method, combined with subsequent low temperature dried process. In this configuration, the TCS microspheres are constructed by the intercon- nected porous nanosheets, which are further assembled with abundant nanoparticles and carbonaceous species. Such composite microspheres possess a large specific surface area of 337 m2 g-l, uniform mesopores of 3.37 nm and high total pore volumes of 0.275 cm3 g-1. The materials exhibit the enhanced photocatalytic properties and stability for degradation of rhodamine B (RhB) under visible-light irradiation. The enhanced photocatalytic degradation performance may be ascribed to their abundant porous structure, large specific surface area and the unique assist-function of the carbonaceous species.
基金Acknowledgements: This project is supported by the fund of the Plan of Postgraduate Scientific Research Innovation of Jiangsu Province (No. CX07B_175z) and the Natural Science Foundation of Henan Province (No. 0624720029).
文摘Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.
文摘Fe-doped TiO2 was prepared by the sol gel method and characterized by X-ray diffraction. All the Fe-doped TiO2 were composed of an anatase crystal form. The activity of the Fe-doped TiO2 for the degradation of the gesaprim commercial herbicide (which contains atrazine as active compound and formulating agents) was studied by varying the iron content during UV (15 W), visible light and solar irradiations. The visible light came from commercial saving energy lamps (13, 15 and 20 Watts). The gesaprim degradation rate depended on the iron content in the photo catalyst. The Fe-doped TiO2 (0.5% by weight of TiO2) showed higher TOC removal under visible light and was more active than the undoped TiO2 photo catalyst under the light irradiation sources tested. Over 90% of chemical oxygen demand abatement was achieved with both UV and visible light but less time was required to decrease the chemical oxygen demand content by using the catalyst doped with iron at 0.5% under visible light. It was observed that the degradation of gesaprim increased by increasing the iron content in the catalyst under visible light.
基金supported financially by the National Natural Science Foundation of China(Nos.21501140,21403165,51372197)the Outstanding Youth Science Fund of Xi’an University of Science and Technology(No.2019YQ2-06)the Key Innovation Team of Shaanxi Province(No.2014KCT-04)。
文摘TiO2/Bi4 Ti3 O12 hybrids have been widely prepared as promising photocatalysts for decomposing organic contaminations.However,the insufficient visible light absorption and low charge separation efficiency lead to their poor photocatalytic activity.Herein,a robust methodology to construct novel TiO2/Bi4 Ti3 O12/MoS2 core/shell structures as visible light photocatalysts is presented.Homogeneous bismuth oxyiodide(BiOI) nanoplates were immobilized on electrospun TiO2 nanofiber surface by successive ionic layer adsorption and reaction(SILAR) method.TiO2/Bi4 Ti3 O12 core/shell nanofibers were conveniently prepared by partial conversion of TiO2 to high crystallized Bi4 Ti3 O12 shells through a solid-state reaction with BiOI nanoplates,which is accompanied with certain transition of TiO2 from anatase to rutile phase.Afterwards,MoS2 nanosheets with several layers thick were uniform decorated on the TiO2/Bi4 TiO3 O12 fiber surface resulting in TiO2/Bi4 Ti3 O12/MoS2 structures.Significant enhancement of visible light absorption and photo-generated charge separation of TiO2/Bi4 Ti3 O12 were achieved by introduction of MoS2.As a result,the optimized TiO2/Bi4 Ti3 O12/MoS2-2 presents 60% improvement for photodegrading RhB after 120 min irradiation under visible light and 3 times higher of apparent reaction rate constant in compared with the TiO2/Bi4 Ti3 O12.This synthetic method can also be used to establish other photocatalysts simply at low cost,therefore,is suitable for practical applications.
基金supported by the Department of Chemical and Petrochemical Engineering,Egypt-Japan University of Science and Technology.
文摘The steel industry produces many byproducts, requiring extensive land for storage and causing significant environmental contamination. Industrial effluents discharged into water bodies negatively impact both aquatic ecosystems and human health. To solve this problem, this study synthesized a composite of titanium dioxide (TiO2) and steel slag nanocomposites (SSNC) at a 1:2 mass ratio to create a robust photocatalyst for the treatment of synthetic wastewater. The efficacy of this catalyst in degrading various dye pollutants, including methylene blue (MB), was tested under simulated solar light conditions. Comprehensive analyses were conducted to assess the physical and chemical characteristics, crystalline structure, energy gap, and point of zero charge of the composite. The TiO2-SSNC composite catalyst exhibited excellent stability, with a point of zero charge at 8.342 and an energy gap of 2.4 eV. The degradation process conformed to pseudo-first-order kinetics. Optimization of operational parameters was achieved through the response surface methodology. Reusability tests demonstrated that the TiO2-SSNC composite catalyst effectively degraded up to 93.41% of MB in the suspended mode and 92.03% in the coated mode after five cycles. Additionally, the degradation efficiencies for various dyes were significant, highlighting the potential of the composite for broad applications in industrial wastewater treatment. This study also explored the degradation mechanisms and identified byproducts, establishing a pathway for contaminant breakdown. The cost-benefit analysis revealed a total cost of 0.842 8 USD per cubic meter for each treatment activity, indicating low operational and production costs. These findings underscore the promise of the TiO2-SSNC composite as a cost-effective and efficient alternative for wastewater purification.
基金financially supported by the National Natural Science Foundation of China (No.52071146)Guangdong Provincial Natural Science Foundation (No.2023A1515010989)the Science and Technology Projects in Guangzhou (No.202201000008)。
文摘Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of photogenerated charge carriers.Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult.In this study,we present a novel approach combining molybdenum(Mo) monoatomic doping and size engineering to produce a series of Mo-ReS_(2) quantum dots(MR QDs) with controllable dimensions.High-resolution structural characterization,first-principle calculations,and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry,thereby improving the piezoelectric properties.The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency,leading to optimized photocatalytic performance.Additionally,the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals,substantially boosting photo-sterilization efficiency.Our results demonstrate the elimination of 99.95% of Escherichia coli and 100.00% of Staphylococcus aureus within 30 min.Furthermore,we developed a self-purification system simulating water drainage,utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs,achieving piezoelectric synergistic photodegradation.This innovative approach provides a more environmentally friendly and economical method for water self-purification,paving the way for advanced water treatment technologies.
基金financially supported by the National Natural Science Foundation of China(No.51302061)Natural Science Foundation of Hebei Province(No.E2020201021 and E2023201019)+4 种基金Industry-University-Research Cooperation Major Projects of Shijiazhuang(No.241130477A)Research Innovation Team of College of Chemistry and Environmental Science of Hebei University(No.hxkytd2102)Industry-University-research Cooperation Project of Colleges and Universities in Hebei Province(No.CXZX2025016)Hebei Province Innovation Capability Enhancement Plan Project(No.22567620H)Bintuan Science and Technology Program(Nos.2020DB002 and 2022DB009)。
文摘Peroxymonosulfate(PMS)is commonly used in advanced oxidation processes to degrade organic pollutants in wastewater.In this work,to obtain better PMS activation efficiency,Bi_(4)O_(5)Br_(2)/BCZT(BBT)piezoelectric photocatalyst was designed.Abundant active radicals produced by BBT under visible light irradiation and ultrasonic vibration were used to activate PMS,thereby achieving rapid degradation of high concentration pollutants.With the introduction of BCZT,the catalyst has a strong internal electric field and three-dimensional lamellar structure,which promotes the separation and transfer of electrons and holes.It is worth noting that under optimal reaction conditions,the degradation rate of ARB reached 93%by BBT15 within 10 min.The catalytic experiment combined with the piezoelectric performance test results revealed the key role of piezoelectric photocatalytic reaction in PMS activation.This provides an important prospect for PMS to effectively deal with the degradation of high concentrations of organic pollutants.
基金supported by Liaoning Revitalization Talents Program(No.XLYC1907173)the Science and Technology General Project of Liaoning Provincial Education Department(No.LJKMZ20221835)the National Natural Science Foundation of China(Nos.22006073 and 22205027).
文摘The mass production and widespread use of Pharmaceuticals and Personal Care Products(PPCPs)have posed a serious threat to the water environment and public health.In this work,a green metal-based Metal Organic Framework(MOF)Bi-NH_(2)-BDC was prepared and characterized,and the adsorption characteristics of Bi-NH_(2)-BDCwere investigated with typical PPCPs-diclofenac sodium(DCF).It was found that DCF mainly covered the adsorbent surface as a single molecular layer,the adsorption reaction was a spontaneous,entropyincreasing exothermic process and the adsorption mechanisms between Bi-NH_(2)-BDC and DCF were hydrogen bonding,π-πinteractions and electrostatic interactions.In addition,Bi-NH_(2)-BDC also had considerable photocatalytic properties,and its application in adsor-bent desorption treatment effectively solved the problem of secondary pollution,achieving a green and sustainable adsorption desorption cycle.
文摘The production of renewable methanol(CH_(3)OH)via the photocatalytic hydrogenation of CO_(2) is an ideal method to ameliorate energy shortages and mitigate CO_(2) emissions:however,the highly selective synthesis of methanol at atmospheric pressure remains challenging owing to the competing reverse water-gas shift(RWGS)reaction.Herein,we present a novel approach for the synthesis of CH_(3)OH via photocatalytic CO_(2) hydrogenation using a catalyst featuring highly dispersed Au nanoparticles loaded on oxygen vacancy(OV)-rich molybdenum dioxide(MoO_(2)),resulting in a remarkable selectivity of 43.78%.The active sites in the Au/MoO_(2) catalyst are high-density Au-oxygen vacancies,which synergistically promote the tandem methanol synthesis via an initial RWGS reaction and subsequent CO hydrogenation.This work provides comprehensive insights into the design of metal-vacancy synergistic sites for the highly selective photocatalytic hydrogenation of CO_(2) to CH_(3)OH.
基金supported by the National Natural Science Foundation of China(No.22271090)。
文摘Herein,a simple and effective outer-surface interactions assisted supramolecular hierarchical assembly has been first exploited to uniformly distribute tungstosilicic acid(TSA)inside the porous structure of cucurbit[10]uril-based single-layer 2D supramolecular-organic-frameworks(Q[10]-SOFs)in water.Importantly,the 2D Q[10]-SOFs can further serve as light harvesting antenna,achieving fast energy transfer to the embedded redox-active TSA upon photoexcitation,resulting in efficient visible light-driven selective oxidation of benzyl alcohols into the corresponding aldehydes in high yield at room temperature.Further studies revealed that the integrated of 2D Q[10]-SOFs and TSA played a key role in the catalytic process,due to the presence of a novel stepwise electron transfer route in the single-layer hybrid 2D structures.
基金Project supported by the National Natural Science Foundation of China(22106074)Tianjin Science and Technology Program(23YDTPJC00540,22YJDSS00060)。
文摘Ce-β-Bi_(2)O_(3)/AgI was prepared using solvothermal calcination and in-situ deposition methods.The introduction of Ce can inhibit the conversion of Bi_(2)O_(3)fromβtoαphase at high temperatures,promoting the formation of oxygen vacancies(OVs)in the photocatalyst.OVs can adsorb more dissolved oxygen to promote the formation rate of·O^(-)_(2).Moreover,the interaction between Ce-Bi_(2)O_(3)and AgI results in the formation of Z-scheme heterojunctions,which can broaden the light absorption region,facilitate photogenerated carrier separation and transfer and enhance the ability to produce more active oxygen species(ROS).The morphology,crystal,element distribution and photo-electric chemical properties of the Ce-Bi_(2)O_(3)/AgI were analyzed,and the result shows that the optimal ratio of Ce-Bi_(2)O_(3)/AgI photocatalyst achieves a removal rate of 88.63%(180 min)of tetracycline(TC)(20 mg/L)and 100%(120 min)of methyl orange(MO)(20 mg/L).This work clarified the photocatalytic degradation mechanism,providing a promising avenue for developing photocatalytic composites by rare earth metal doping in environme ntal remediation applications.
文摘The problem of water depollution is gaining importance, especially as regulatory standards concerning drinking water are increasingly strict. The different industries (textile industries) generate chemically stable pollutants such as methyl orange which make their degradation difficult. It is therefore necessary to find new, more effective techniques for the treatment of these discharges. Among the different solutions proposed to deal with this problem, we find advanced oxidation processes (POAs) which are clean and promising technologies in the field of wastewater depollution. In this regard, heterogeneous photocatalysis was used in an aqueous suspension of titanium oxide (TiO2) using a ultraviolet (UV) lamp as artificial radiation. The objective of this work is to study the influence of some operating parameters such as: the catalyst mass, the initial pollutant concentration, the volume of the solution and the pH of the solution, were examined. The results obtained showed that this photocatalyst made it possible to degrade 99.85% of the initial concentration of methyl orange (10 ppm), after 240 min of irradiation with an optimal mass of 0.50 g of TiO2 for a volume of 200 mL of methyl orange solution at pH = 3.0.