Semiconductor oxides are widely used to achieve photocatalytic removal of NOx(NO and NO2) species. These materials also exhibit enhanced oxidation ability in thermally assisted photocatalysis;however, many of them ten...Semiconductor oxides are widely used to achieve photocatalytic removal of NOx(NO and NO2) species. These materials also exhibit enhanced oxidation ability in thermally assisted photocatalysis;however, many of them tend to be deactivated at high relative humidity(RH) levels. In the case of the benchmark P25 TiO2 photocatalyst, we observe a significant decrease in non-NO2 selectivity from 95.02% to 58.33% when RH increases from 20% to 80%. Interestingly, the porous TiO2(B) microspheres synthesized in this work exhibit 99% selectivity at 20% RH;the selectivity remains as high as 96.18% at 80% RH. The high humidity tolerance of the TiO2(B) sample can be ascribed to its strong water desorption capacity and easy O2 adsorption at elevated temperatures, which reflects the fact that the superoxide radical is the main active species for the deep oxidation of NOx. This work may inspire the design of efficient photothermal catalysts with application in NOx removal in hot and humid environments.展开更多
The method of Ti/TiO2-NiO photoelectrode prepared by using sol-gel method continued by calcination process was introduced. The prepared TiO2-NiO film was observed with XRD and TEM. The anatase-rutile TiO2 was mainly o...The method of Ti/TiO2-NiO photoelectrode prepared by using sol-gel method continued by calcination process was introduced. The prepared TiO2-NiO film was observed with XRD and TEM. The anatase-rutile TiO2 was mainly on the prepared TiO2-NiO composite surface electrode. In addition to NiO, the composite also formed NiTiO3 that increased with increasing calcination temperature. Photoelectrocatalytic degradation of Rhodamine B (RB) using this electrode was investigated, and anodic potential and pH were optimized. RB degradation was investigated under different conditions, and it showed that photoelectrocatalytic degradation could achieve efficient and complete mineralization of organic pollutant. Through comparison of the photoelectrocatalytic oxidation using the Ti/TiO2-NiO electrode operated by single photoanode with the Ti/TiO2-NiO electrode operated by several photoanode, it was found that the photoelectrocatalytic efficiency of that by series photoanodes was higher. Additionally, photoelectrocatalytic system was performed at the several different photoelectrodes, which verified the higher photocatalytic activity compared with the single photoelectrode.展开更多
文摘Semiconductor oxides are widely used to achieve photocatalytic removal of NOx(NO and NO2) species. These materials also exhibit enhanced oxidation ability in thermally assisted photocatalysis;however, many of them tend to be deactivated at high relative humidity(RH) levels. In the case of the benchmark P25 TiO2 photocatalyst, we observe a significant decrease in non-NO2 selectivity from 95.02% to 58.33% when RH increases from 20% to 80%. Interestingly, the porous TiO2(B) microspheres synthesized in this work exhibit 99% selectivity at 20% RH;the selectivity remains as high as 96.18% at 80% RH. The high humidity tolerance of the TiO2(B) sample can be ascribed to its strong water desorption capacity and easy O2 adsorption at elevated temperatures, which reflects the fact that the superoxide radical is the main active species for the deep oxidation of NOx. This work may inspire the design of efficient photothermal catalysts with application in NOx removal in hot and humid environments.
文摘The method of Ti/TiO2-NiO photoelectrode prepared by using sol-gel method continued by calcination process was introduced. The prepared TiO2-NiO film was observed with XRD and TEM. The anatase-rutile TiO2 was mainly on the prepared TiO2-NiO composite surface electrode. In addition to NiO, the composite also formed NiTiO3 that increased with increasing calcination temperature. Photoelectrocatalytic degradation of Rhodamine B (RB) using this electrode was investigated, and anodic potential and pH were optimized. RB degradation was investigated under different conditions, and it showed that photoelectrocatalytic degradation could achieve efficient and complete mineralization of organic pollutant. Through comparison of the photoelectrocatalytic oxidation using the Ti/TiO2-NiO electrode operated by single photoanode with the Ti/TiO2-NiO electrode operated by several photoanode, it was found that the photoelectrocatalytic efficiency of that by series photoanodes was higher. Additionally, photoelectrocatalytic system was performed at the several different photoelectrodes, which verified the higher photocatalytic activity compared with the single photoelectrode.