TaN/NbN multilayered coatings with nanoscale bilayer periods were synthesized at different Ar/N2 flow rates by RF (radio frequency) magnetron sputtering. XRD (X-ray diffraction) and Nano Indenter System were emplo...TaN/NbN multilayered coatings with nanoscale bilayer periods were synthesized at different Ar/N2 flow rates by RF (radio frequency) magnetron sputtering. XRD (X-ray diffraction) and Nano Indenter System were employed to investigate the influence of Ar/N2 flow rate (FAr:FN2) on microstructure and mechanical properties of the coatings. The low-angle XRD pattern indicated a well-defined composition modulation and layer structure of the multilayered coating. All multilayered coatings almost revealed higher hardness than the rule-of-mixtures value of monolithic TaN and NbN coatings. At FAr:FN2=10, the multilayered coating possessed desirable hardness, elastic modulus, internal stress, and fracture resistance, compared with ones synthesized at other Ar/N2 flow rates. The layered structure with strong mixture of TaN (110), (111), (200) and Nb2N (101)textures should be related to the enhanced mechanical properties.展开更多
Plasma-activated electron beam-physical vapor deposition(EB-PVD)was used for depositing nitride multilayer coatings in this work.Different from the conventional coating methods,the multilayers were obtained by manip...Plasma-activated electron beam-physical vapor deposition(EB-PVD)was used for depositing nitride multilayer coatings in this work.Different from the conventional coating methods,the multilayers were obtained by manipulating electron beam(EB)to jump between two different evaporation sources alternately with variable frequencies(jumping beam technology).The plasma activation was generated by a hollow cathode plasma unit.The deposition process was demonstrated by means of tailoring TiN/TiAlN multilayers with different modulation periods(M1:26.5 nm,M2:80.0 nm,M3:6.0 nm,M4:4.0 nm).The microstructure and hardness of the multilayer coatings were comparatively studied with TiN and TiAlN singlelayer coatings.The columnar structure of the coatings(TiN,TiAlN,M1,M2)is replaced by a glassy-like microstructure when the modulation period decreases to less than 10 nm(M3,M4).Simultaneously,superlattice growth occurs.With the decrease of modulation period,both the hardness and the plastic deformation resistance(H^3/E^2,H-hardness and E-elastic modulus)increase.M4coating exhibits the maximum hardness of(49.6±2.7)GPa and the maximum plastic deformation resistance of^0.74 GPa.展开更多
Polycrystalline TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy Substrates. Multilayer structure and composition modulation amplitudes were studied using X-ray diffraction ...Polycrystalline TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy Substrates. Multilayer structure and composition modulation amplitudes were studied using X-ray diffraction method. Hardness and elastic modulus were measured by nanoindentation tester. For A>8.0 nm, hardness is lower than rule-of mixtures value of individual single layer, and increased rapidly with decreasing A, peaking at hardness values≈33% higher than that at A=4.3 nm. As a result of analysing the inclination of applied load for indenter displacement on P-h curve (△P/△h), this paper exhibits that the enhancement of the resistance to dislocation motion and elastic anomaly due to coherency strains are responsibie for the hardness change展开更多
Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-s...Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.展开更多
Nanomultilayered TiN/Ni thin films with different bilayer periods(57.8-99.7 nm) and Ni single-layer thickness(3.9-19.2 nm) were prepared by alternatively sputtering Ti and Ni targets in N2 gas atmosphere.The micros tr...Nanomultilayered TiN/Ni thin films with different bilayer periods(57.8-99.7 nm) and Ni single-layer thickness(3.9-19.2 nm) were prepared by alternatively sputtering Ti and Ni targets in N2 gas atmosphere.The micros tructure,mechanical and corrosion properties of the multilayer films were investigated by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),X-ray photoelectron spectroscopy(XPS),nanoindenter and electrochemical technologies.The multilayer films are fine with a mean grain size of ~8-9 nm independent of the bilayer period.However,the smoothness and compactness seem to decrease with the bilayer period increasing.The hardness(H) and elastic modulus(E) of the multilayer films gradually decrease as the bilayer period increases,and the multilayer film with bilayer period of 57.8 nm exhibits higher H,ratios of(H/E^*and H^3/E^*2)(E^*is effective Young’s modulus)than the monolithic TiN film and the other multilayers.The multilayer films exhibit an obvious passivation phenomenon in 10% H2SO4 solution,and the passive current and corrosion current densities decrease,whereas the corrosion potential increases when the bilayer period or Ni single-layer thickness decreases.It is found that the passivating behavior and corrosion potential of the multilayers are more sensitive to Ni single-layer thickness than the bilayer period.More corrosion pits and lamellar flaking could be found on the films with larger bilayer period or Ni single-layer thickness.展开更多
TiN single coatings and TiN/Ti(C,N) multilayer coatings deposited on Cr12MoV substrate have been completed by pulsed DC plasma enhanced chemical vapor deposition(PCVD) process. The SEM, XRD and microvicker’s hardness...TiN single coatings and TiN/Ti(C,N) multilayer coatings deposited on Cr12MoV substrate have been completed by pulsed DC plasma enhanced chemical vapor deposition(PCVD) process. The SEM, XRD and microvicker’s hardness as well as the indentation test were used to study the microstructure and mechanical properties of TiN/Ti(C,N) multilayer coatings. The results show that TiN/Ti(C,N) coatings are fine and have free column structure, and carbon atoms take the place of some nitrogen atoms in Ti(C,N) coatings when lower flow ratio of CH 4 is used. The microvicker’s hardness and interfacial adhesion between TiN/Ti(C,N) coatings and Cr12MoV substrate increases more obviously than that of TiN single hard coatings due to the more dense and free column structure when process is optimized.展开更多
Ti/TiN multilayer film was deposited on uranium surface by arc ion plating technique to improve fretting wear behavior. The morphology, structure and element distribution of the film were measured by scanning electric...Ti/TiN multilayer film was deposited on uranium surface by arc ion plating technique to improve fretting wear behavior. The morphology, structure and element distribution of the film were measured by scanning electric microscopy(SEM), X-ray diffractometry(XRD) and Auger electron spectroscopy(AES). Fretting wear tests of uranium and Ti/TiN multilayer film were carried out using pin-on-disc configuration. The fretting tests of uranium and Ti/TiN multilayer film were carried out under normal load of 20 N and various displacement amplitudes ranging from 5 to 100 μm. With the increase of the displacement amplitude, the fretting changed from partial slip regime(PSR) to slip regime(SR). The coefficient of friction(COF) increased with the increase of displacement amplitude. The results indicated that the displacement amplitude had a strong effect on fretting wear behavior of the film. The damage of the film was very slight when the displacement amplitude was below 20 μm. The observations indicated that the delamination was the main wear mechanism of Ti/TiN multilayer film in PSR. The main wear mechanism of Ti/TiN multilayer film in SR was delamination and abrasive wear.展开更多
TiN/CrN multilayered hard coatings with TiCrN interlayer were deposited onhigh speed steel substrates by using a filtered cathodic vacuum arc technique. The structure andcomposition of the coatings were characterized ...TiN/CrN multilayered hard coatings with TiCrN interlayer were deposited onhigh speed steel substrates by using a filtered cathodic vacuum arc technique. The structure andcomposition of the coatings were characterized by scanning electron microscopy (SEM) and Augerelectron spectroscopy (AES). A high adhesion of up to 80 N was demonstrated by scratching tests forthe multi-layered coatings. Nanoindentation tests were performed to determine the hardness andelastic modulus of the coatings as a function of the multiplayer modulation period. It was observedthat the hardness of the multilayered coatings is higher than those of either TiN or CrN singlecoatings, and it increases with decreasing modulation periods, which is consistent with predictionsfrom the Hall-Petch type strengthening mechanism, though at small modulation periods, deviation fromthe Hall-Petch relation has been observed for the multilayered coatings. The life-span of drillscoated with TiN/CrN multilayered is triple as long as that coated with TiN layer.展开更多
The TiN/Ti multilayer was deposited on Ti-811 alloy surface by magnetron sputtering(MS) technique for improving fretting fatigue(FF) resistance of the titanium alloy at elevated temperature. The element distribution, ...The TiN/Ti multilayer was deposited on Ti-811 alloy surface by magnetron sputtering(MS) technique for improving fretting fatigue(FF) resistance of the titanium alloy at elevated temperature. The element distribution, bonding strength, micro-hardness and ductility of the TiN/Ti multilayer were measured. The effects of the TiN/Ti multilayer on the tribological property and fretting fatigue resistance of the titanium alloy substrate at elevated temperature were compared. The results indicate that by MS technique a TiN/Ti multilayer with high hardness, good ductility and high bearing load capability can be prepared. The MS TiN/Ti multilayer, for its good toughness and tribological behavior, can significantly improve the wear resistance and FF resistance of the Ti-811 alloy at 350 ℃.展开更多
Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), n...Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), nanoindentation, Rockwell A indentation test, strength measurements and cutting tests. The results show that the (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings perform good affinity to substrate, and the TiN/(Ti, Al)N multilayer coating exhibits higher hardness, higher toughness and better cutting performance compared with the (Ti, Al)N monolayer coating. Moreover, the strength measurement indicates that the physical vapour deposition (PVD) coating has no effect on the substrate strength.展开更多
Multilayer thin films of TiN/SiNx have been deposited onto heated Si 100 substra tes (200℃) by reactive dc-magnetron sputtering from Ti and Si targets in an Ar- N2 gas mixture. The rotation speed of the substrate hol...Multilayer thin films of TiN/SiNx have been deposited onto heated Si 100 substra tes (200℃) by reactive dc-magnetron sputtering from Ti and Si targets in an Ar- N2 gas mixture. The rotation speed of the substrate holder was varied from 1 to 20rpm, while target currents were held constant, to produce bilayer periods vary ing from approximately 22 to 0.6nm. These multilayer films were characterized by atomic force microscopy (AFM), cross-sectional transmission electron microscopy (TEM), scanning electron microscopy (SEM), and microhardness measurements. TEM and SEM studies showed elimination of columnar structure in TiN, owing to the in corporation of amorphous SiNx layers. The crystallinity of TiN and amorphous nat ure of SiNx were confirmed by high resolution TEM. An optimum rotation speed was observed, at which hardness was a maximum. The resulting bilayer period was fou nd to be approximately 1.6nm, which resulted in a significant improvement in mic rohardness (~57GPa). The rms surface roughness for this film was less than 1.5nm .展开更多
The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation p...The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation period on the microhardness and to elucidate the hardening mechanisms of the synthesized nanomultilayer films. The results showed that the hardness of Si3N4/TiN nano-multilayers is affected not only by modulation period, but also by modulation ratio. The hardness reaches its maximum value when modulation period equa1s a critical value λ0, which is about 12 nm with a modulation ratio of 3: 1. The maximum hardness value is about 40% higher than the value calculated from the rule of mixtures. The hardness of nano-multilayer thin films was found to decrease rapidly with increasing or decreasing modulation period from the Point of λ0. The microstructures of the nano-multilayer films have been investigated using XRD and TEM. Based on experimental results, the mechanism of the superhardness in this system was proposed.展开更多
文摘TaN/NbN multilayered coatings with nanoscale bilayer periods were synthesized at different Ar/N2 flow rates by RF (radio frequency) magnetron sputtering. XRD (X-ray diffraction) and Nano Indenter System were employed to investigate the influence of Ar/N2 flow rate (FAr:FN2) on microstructure and mechanical properties of the coatings. The low-angle XRD pattern indicated a well-defined composition modulation and layer structure of the multilayered coating. All multilayered coatings almost revealed higher hardness than the rule-of-mixtures value of monolithic TaN and NbN coatings. At FAr:FN2=10, the multilayered coating possessed desirable hardness, elastic modulus, internal stress, and fracture resistance, compared with ones synthesized at other Ar/N2 flow rates. The layered structure with strong mixture of TaN (110), (111), (200) and Nb2N (101)textures should be related to the enhanced mechanical properties.
基金financially supported by the National Natural Science Foundations of China(Nos.51201005 and 51231001)
文摘Plasma-activated electron beam-physical vapor deposition(EB-PVD)was used for depositing nitride multilayer coatings in this work.Different from the conventional coating methods,the multilayers were obtained by manipulating electron beam(EB)to jump between two different evaporation sources alternately with variable frequencies(jumping beam technology).The plasma activation was generated by a hollow cathode plasma unit.The deposition process was demonstrated by means of tailoring TiN/TiAlN multilayers with different modulation periods(M1:26.5 nm,M2:80.0 nm,M3:6.0 nm,M4:4.0 nm).The microstructure and hardness of the multilayer coatings were comparatively studied with TiN and TiAlN singlelayer coatings.The columnar structure of the coatings(TiN,TiAlN,M1,M2)is replaced by a glassy-like microstructure when the modulation period decreases to less than 10 nm(M3,M4).Simultaneously,superlattice growth occurs.With the decrease of modulation period,both the hardness and the plastic deformation resistance(H^3/E^2,H-hardness and E-elastic modulus)increase.M4coating exhibits the maximum hardness of(49.6±2.7)GPa and the maximum plastic deformation resistance of^0.74 GPa.
文摘Polycrystalline TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy Substrates. Multilayer structure and composition modulation amplitudes were studied using X-ray diffraction method. Hardness and elastic modulus were measured by nanoindentation tester. For A>8.0 nm, hardness is lower than rule-of mixtures value of individual single layer, and increased rapidly with decreasing A, peaking at hardness values≈33% higher than that at A=4.3 nm. As a result of analysing the inclination of applied load for indenter displacement on P-h curve (△P/△h), this paper exhibits that the enhancement of the resistance to dislocation motion and elastic anomaly due to coherency strains are responsibie for the hardness change
基金Project(2011B050400007)supported by the International Cooperation Program of Guangdong Province,China
文摘Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.
基金financially supported by the National Natural Science Foundation of China (No.51171118)
文摘Nanomultilayered TiN/Ni thin films with different bilayer periods(57.8-99.7 nm) and Ni single-layer thickness(3.9-19.2 nm) were prepared by alternatively sputtering Ti and Ni targets in N2 gas atmosphere.The micros tructure,mechanical and corrosion properties of the multilayer films were investigated by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),X-ray photoelectron spectroscopy(XPS),nanoindenter and electrochemical technologies.The multilayer films are fine with a mean grain size of ~8-9 nm independent of the bilayer period.However,the smoothness and compactness seem to decrease with the bilayer period increasing.The hardness(H) and elastic modulus(E) of the multilayer films gradually decrease as the bilayer period increases,and the multilayer film with bilayer period of 57.8 nm exhibits higher H,ratios of(H/E^*and H^3/E^*2)(E^*is effective Young’s modulus)than the monolithic TiN film and the other multilayers.The multilayer films exhibit an obvious passivation phenomenon in 10% H2SO4 solution,and the passive current and corrosion current densities decrease,whereas the corrosion potential increases when the bilayer period or Ni single-layer thickness decreases.It is found that the passivating behavior and corrosion potential of the multilayers are more sensitive to Ni single-layer thickness than the bilayer period.More corrosion pits and lamellar flaking could be found on the films with larger bilayer period or Ni single-layer thickness.
文摘TiN single coatings and TiN/Ti(C,N) multilayer coatings deposited on Cr12MoV substrate have been completed by pulsed DC plasma enhanced chemical vapor deposition(PCVD) process. The SEM, XRD and microvicker’s hardness as well as the indentation test were used to study the microstructure and mechanical properties of TiN/Ti(C,N) multilayer coatings. The results show that TiN/Ti(C,N) coatings are fine and have free column structure, and carbon atoms take the place of some nitrogen atoms in Ti(C,N) coatings when lower flow ratio of CH 4 is used. The microvicker’s hardness and interfacial adhesion between TiN/Ti(C,N) coatings and Cr12MoV substrate increases more obviously than that of TiN single hard coatings due to the more dense and free column structure when process is optimized.
基金Projects(U1530136,51375407) supported by the National Natural Science Foundation of ChinaProject(2017TD0017) supported by the Young Scientific Innovation Team of Science and Technology of Sichuan Province,China
文摘Ti/TiN multilayer film was deposited on uranium surface by arc ion plating technique to improve fretting wear behavior. The morphology, structure and element distribution of the film were measured by scanning electric microscopy(SEM), X-ray diffractometry(XRD) and Auger electron spectroscopy(AES). Fretting wear tests of uranium and Ti/TiN multilayer film were carried out using pin-on-disc configuration. The fretting tests of uranium and Ti/TiN multilayer film were carried out under normal load of 20 N and various displacement amplitudes ranging from 5 to 100 μm. With the increase of the displacement amplitude, the fretting changed from partial slip regime(PSR) to slip regime(SR). The coefficient of friction(COF) increased with the increase of displacement amplitude. The results indicated that the displacement amplitude had a strong effect on fretting wear behavior of the film. The damage of the film was very slight when the displacement amplitude was below 20 μm. The observations indicated that the delamination was the main wear mechanism of Ti/TiN multilayer film in PSR. The main wear mechanism of Ti/TiN multilayer film in SR was delamination and abrasive wear.
基金This work was financially supported by the Science Foundation of Lanzhou Institute Chemistry and Physics, Chinese Academy of Science (No.01-03).
文摘TiN/CrN multilayered hard coatings with TiCrN interlayer were deposited onhigh speed steel substrates by using a filtered cathodic vacuum arc technique. The structure andcomposition of the coatings were characterized by scanning electron microscopy (SEM) and Augerelectron spectroscopy (AES). A high adhesion of up to 80 N was demonstrated by scratching tests forthe multi-layered coatings. Nanoindentation tests were performed to determine the hardness andelastic modulus of the coatings as a function of the multiplayer modulation period. It was observedthat the hardness of the multilayered coatings is higher than those of either TiN or CrN singlecoatings, and it increases with decreasing modulation periods, which is consistent with predictionsfrom the Hall-Petch type strengthening mechanism, though at small modulation periods, deviation fromthe Hall-Petch relation has been observed for the multilayered coatings. The life-span of drillscoated with TiN/CrN multilayered is triple as long as that coated with TiN layer.
基金Projects(50671085, 50371060) supported by the National Natural Science Foundation of ChinaProject(2007AA03Z521) supported by the National High-tech Research and Development Program of China
文摘The TiN/Ti multilayer was deposited on Ti-811 alloy surface by magnetron sputtering(MS) technique for improving fretting fatigue(FF) resistance of the titanium alloy at elevated temperature. The element distribution, bonding strength, micro-hardness and ductility of the TiN/Ti multilayer were measured. The effects of the TiN/Ti multilayer on the tribological property and fretting fatigue resistance of the titanium alloy substrate at elevated temperature were compared. The results indicate that by MS technique a TiN/Ti multilayer with high hardness, good ductility and high bearing load capability can be prepared. The MS TiN/Ti multilayer, for its good toughness and tribological behavior, can significantly improve the wear resistance and FF resistance of the Ti-811 alloy at 350 ℃.
文摘Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), nanoindentation, Rockwell A indentation test, strength measurements and cutting tests. The results show that the (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings perform good affinity to substrate, and the TiN/(Ti, Al)N multilayer coating exhibits higher hardness, higher toughness and better cutting performance compared with the (Ti, Al)N monolayer coating. Moreover, the strength measurement indicates that the physical vapour deposition (PVD) coating has no effect on the substrate strength.
文摘Multilayer thin films of TiN/SiNx have been deposited onto heated Si 100 substra tes (200℃) by reactive dc-magnetron sputtering from Ti and Si targets in an Ar- N2 gas mixture. The rotation speed of the substrate holder was varied from 1 to 20rpm, while target currents were held constant, to produce bilayer periods vary ing from approximately 22 to 0.6nm. These multilayer films were characterized by atomic force microscopy (AFM), cross-sectional transmission electron microscopy (TEM), scanning electron microscopy (SEM), and microhardness measurements. TEM and SEM studies showed elimination of columnar structure in TiN, owing to the in corporation of amorphous SiNx layers. The crystallinity of TiN and amorphous nat ure of SiNx were confirmed by high resolution TEM. An optimum rotation speed was observed, at which hardness was a maximum. The resulting bilayer period was fou nd to be approximately 1.6nm, which resulted in a significant improvement in mic rohardness (~57GPa). The rms surface roughness for this film was less than 1.5nm .
文摘The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation period on the microhardness and to elucidate the hardening mechanisms of the synthesized nanomultilayer films. The results showed that the hardness of Si3N4/TiN nano-multilayers is affected not only by modulation period, but also by modulation ratio. The hardness reaches its maximum value when modulation period equa1s a critical value λ0, which is about 12 nm with a modulation ratio of 3: 1. The maximum hardness value is about 40% higher than the value calculated from the rule of mixtures. The hardness of nano-multilayer thin films was found to decrease rapidly with increasing or decreasing modulation period from the Point of λ0. The microstructures of the nano-multilayer films have been investigated using XRD and TEM. Based on experimental results, the mechanism of the superhardness in this system was proposed.