期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Robust graphene oxide-coated porous biochar skeleton constructed on SnO_(2) nanoparticles as high-performance composite anode for lithium-ion batteries
1
作者 Shu-Qing Nie Chang Miao +2 位作者 Guo-Cheng Li Yu Xin Wei Xiao 《Rare Metals》 2025年第7期4571-4581,共11页
SnO_(2)is regarded as a promising lithium storage material due to the advantage of sequential conversion-alloying reaction mechanism.Unfortunately,large volume expansion and undesirable reaction reversibility are iden... SnO_(2)is regarded as a promising lithium storage material due to the advantage of sequential conversion-alloying reaction mechanism.Unfortunately,large volume expansion and undesirable reaction reversibility are identified as two fatal drawbacks.Herein,SnO_(2)nanoparticles encapsulated in graphene oxide-coated porous biochar skeleton(SnO_(2)/PB@GO)are skillfully constructed via an efficient one-step hydrothermal process to be employed as composite anode materials,in which the PB skeleton extracted from waste tea-seed shells possesses enough space to buffer drastic volume variation and the GO coating acts as robust physical matrix to prevent structural degradation.Moreover,double-carbon components successfully anchor SnO_(2)nanoparticles to promote contact and reaction between Sn and Li_(2)O to guarantee high reaction reversibility and structural integration of SnO_(2)/PB@GO electrode.As expected,SnO_(2)/PB@GO-based cell achieves high reversible specific capacity of 783.5 mAh·g^(-1)after 100 cycles at0.1 A.g^(-1)and delivers desirable cycling stability with capacity retention ratio of 81.62%after 300 cycles at1.0 A.g^(-1).Therefore,this work may provide new perspectives on the modification of conversion or alloying typeanodes for lithium-ion batteries and present a feasible strategy to take full advantage of the waste biomass. 展开更多
关键词 tin dioxide anode Porous biochar skeleton Graphene oxide coating Reaction reversibility Lithium-ion battery
原文传递
Effect of rolling technologies on the properties of Pb?0.06wt%Ca?1.2wt%Sn alloy anodes during copper electrowinning 被引量:4
2
作者 Jian Yang Bu-ming Chen +2 位作者 Hui Hang Zhong-cheng Guo Shuai Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第11期1205-1211,共7页
The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the propert... The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance. 展开更多
关键词 anode materials lead calcium tin alloys rolling electrocatalysis corrosion rate electrowinning
在线阅读 下载PDF
Sub-100 nm hollow SnO_2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances 被引量:4
3
作者 Shuang-Lei Yang Bang-Hong Zhou +4 位作者 Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第10期1293-1297,共5页
Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with ... Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs. 展开更多
关键词 tin oxide nanoparticles Carbon coating Lithium ion batteries anode nanomaterials Size-controllable synthesis
原文传递
Electrocatalytic reduction of ortho nitrobenzaldehyde using modified aluminum electrode and its determination
4
作者 Vairamuthu Raj Jayachandran Silambarasan Panchanathan Rajakumar 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第7期1531-1539,共9页
A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanor... A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanorods/anodic aluminum oxide/aluminum(SnNR/AAO/Al) for the first time. The SnNR/AAO/Al electrode was fabricated by a second step anodization, followed by electrodeposition and its electrochemical behavior was investigated in detail. The cyclic voltammetry results indicated that the SnNR/AAO/Al electrode exhibited efficient electrocatalytic activity toward reduction of ONB in the acidic solution. It provides an appreciable improvement of reduction peak for ONB at-0.721 V.Furthermore, various kinetic parameters such as transfer electron number, transfer proton number and standard heterogeneous rate constant were calculated from the scan rates.The electrocatalytic behavior was further exploited as a sensitive detection scheme for the ONB determination by differential pulse voltammetry. Under the optimized conditions, the concentration range and detection limit are 0.1-100 μmol/L and 0.05 μmol/L, respectively,for ONB. The analytical performance of this modified sensor has been evaluated for detection of real sample such as river water and recovery of ONB was achieved all-out up to102.3% under standard addition method. 展开更多
关键词 Electrochemical sensor Organic pollutant Aluminum electrode Anodic aluminum oxide tin nanorods Ortho nitrobenzaldehyde Cyclic voltammetry
原文传递
Effect of Surface Modification on Corrosion Resistance of Pure Titanium.An in Vivo Observation
5
作者 LI Xiao-mei GUO Tian-wen WANG Da-lin 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第2期62-68,共7页
Objective: The aim of this experiment is to study the effect of three methods of surface modification on the corrosion resistance of commercial pure Titanium when used in oral environment for half a year.Method:48 spe... Objective: The aim of this experiment is to study the effect of three methods of surface modification on the corrosion resistance of commercial pure Titanium when used in oral environment for half a year.Method:48 specimens of pure titanium were made and divided into four groups randomly, one group was selected randomly as Group I (control group), the other three groups were treated by three methods of surface modification individually, GroupⅡ:heating oxidation in air(400℃,30min.), GroupⅢ:anodization (45 volts, 10 min.),GroupⅣ:TiN coating(firing temperature 200℃ , total coating time 62min.). Six edentulous volunteers with healthy oral mucosa participated in the in vivo study. One testing piece from each group was selected and fixed in the polished surface of upper complete dentures. Dynamic polarization curves were traced with electrochemical method after the specimens were placed either in oral cavity or in air for 6 months. Results: After all specimens were used, Ecorr altered in every group , Ecorr from high to low were in turn: TiN coating group>heating oxidation group> anodization group>control group, no obvious passive potential Ep and Ip was found in control group. Heating oxidation in air exhibited similar Ep to anodization, but Ip was remarkably lower than that of anodization; TiN coating showed obviously different polarization curves compared with heating-oxidation group and anodization group, Ecorr was positive, and no Ep and Ip was found. Conclusion: Under present experimental condition, all the three treatment methods could enhance corrosion resistance of pure titanium in oral environment, heating oxidation in air exhibited better resistance to corrode than anodization, TiN coating possessed the most excellent corrosion resistance, even after exposed in oral condition for 6 months, there was little change of corrosion resistance. Therefore TiN coating could be adopted to improve corrosion resistance of pure titanium in oral environment. 展开更多
关键词 Surface modification Pure Titanium Corrosion Heating oxidation Anodization tin coating
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部