TiAl is diffusion bonded with Ti, TC4 Alloy and 40Cr Steel by heating in vacuum, and analysis of interfaces shows stratified Ti 3Al forms in TiAl/Ti interface closest to TiAl base, and the α phase and the α+β phase...TiAl is diffusion bonded with Ti, TC4 Alloy and 40Cr Steel by heating in vacuum, and analysis of interfaces shows stratified Ti 3Al forms in TiAl/Ti interface closest to TiAl base, and the α phase and the α+β phase arise closest to Ti base at lower temperature and higher temperature respectively; Structure of TiAl/TC4 interface is TiAl/γ+α 2/Ti 3Al/α-Ti/TC4 at lower temperature and TiAl/γ+β+α 2/TC4 at high temperature; in TiAl/40Cr steel interface, obvious decarbonised layer on steel side while TiC and reaction phase with Fe Al Ti system form on TiAl side.展开更多
Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al inte...Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.展开更多
文摘TiAl is diffusion bonded with Ti, TC4 Alloy and 40Cr Steel by heating in vacuum, and analysis of interfaces shows stratified Ti 3Al forms in TiAl/Ti interface closest to TiAl base, and the α phase and the α+β phase arise closest to Ti base at lower temperature and higher temperature respectively; Structure of TiAl/TC4 interface is TiAl/γ+α 2/Ti 3Al/α-Ti/TC4 at lower temperature and TiAl/γ+β+α 2/TC4 at high temperature; in TiAl/40Cr steel interface, obvious decarbonised layer on steel side while TiC and reaction phase with Fe Al Ti system form on TiAl side.
基金National Natural Science Foundation of China(52065036)Key Program of Natural Science Foundation of Gansu(23JRRA760)+1 种基金Natural Science Foundation of Gansu(22JR5RA298)Hongliu First-Class Disciplines Development Program of Lanzhou University of Technology。
基金the financial supports from the S&T Program of Hebei Province,China(No.20373901D)the National Natural Science Foundation of China(Nos.51807047,51804095)+2 种基金the National Science Foundation of Hebei Province,China(No.E2019402433)the Youth Top Talents Science and Technology Research Project of Hebei Province University,China(No.BJ2019003)the Research and Development Project of Science and Technology of Handan City,China(No.19422111008-19).
文摘Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.