In order to clarify and control the silver defect on surface of cold-rolled sheet of the Ti-stabilized ultra-pure ferrite stainless steel, the distribution of TiN inclusions on the cross section of hot-rolled plate wa...In order to clarify and control the silver defect on surface of cold-rolled sheet of the Ti-stabilized ultra-pure ferrite stainless steel, the distribution of TiN inclusions on the cross section of hot-rolled plate was studied using automated scanning electron microscopy/energy-dispersive X-ray spectroscopy inclusion analysis (ASPEX 1020 system). It was found that the number density decreases sharply from the surface to the center of the hot-rolled plate, whereas the average size increases. Then, the distribution of TiN inclusions on the cross section of continuously cast slab was investigated. Similarly, numerous small-sized TiN inclusions were generated at the subsurface of the slab. The average size rapidly increased and the number density dramatically decreased from the subsurface to 1/4 thickness, while from 1/4 thickness to 1/2 thickness, the increase in average size and the decrease in number density were slight. Thermodynamics results showed that TiN inclusion was formed below the liquidus temperature, which indicated that TiN inclusions could not be formed during secondary refining. Considering the microsegregation of solute elements and the equilibrium of TiN formation during solidification, TiN precipitated in the mushy zone when the solid fraction was close to 0.2. The growth of TiN was analyzed based on the diffusion-controlled growth model. With the increase in cooling rate, the time for TiN growth decreased and the size of TiN inclusions was diminished, which revealed the size distribution of TiN inclusions in the cast slab qualitatively.展开更多
Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.T...Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.The SEN deposit profile was characterized as occurring in three major layers:(1)an eroded refractory layer;(2)an initial adhesive layer comprised an Al_(2)O_(3)-ZrO_(2) composite sub-layer and a dense Al_(2)O_(3)-based deposit sub-layer;and(3)a porous multiphase deposit layer mainly consisting of MgO·Al_(2)O_(3),CaO-Al_(2)O_(3),and CaO-TiOx.The MgO·Al_(2)O_(3)-rich inclusions did not adhere directly to the eroded refractory but were entrapped during the deposit growth.Results of inclusion characterization in the tundish revealed that the MgO·Al2O3-rich particles present in the tundish served as the primary source of clogging deposits.Furthermore,a novel cavity-induced adhesion model by circular approximation was established to explain the effects of complex inclusion characteristics and refractory material type on adhesion force.A high number of small MgO·Al_(2)O_(3) inclusions were expected to accelerate the buildup of clogging deposits.Improving the modification of MgO·Al_(2)O_(3)-rich inclusions in the size range of 2-4μm by Ca treatment was crucial to minimizing the risk of SEN clogging during the continuous casting of Ti-UPFS steels.展开更多
文摘In order to clarify and control the silver defect on surface of cold-rolled sheet of the Ti-stabilized ultra-pure ferrite stainless steel, the distribution of TiN inclusions on the cross section of hot-rolled plate was studied using automated scanning electron microscopy/energy-dispersive X-ray spectroscopy inclusion analysis (ASPEX 1020 system). It was found that the number density decreases sharply from the surface to the center of the hot-rolled plate, whereas the average size increases. Then, the distribution of TiN inclusions on the cross section of continuously cast slab was investigated. Similarly, numerous small-sized TiN inclusions were generated at the subsurface of the slab. The average size rapidly increased and the number density dramatically decreased from the subsurface to 1/4 thickness, while from 1/4 thickness to 1/2 thickness, the increase in average size and the decrease in number density were slight. Thermodynamics results showed that TiN inclusion was formed below the liquidus temperature, which indicated that TiN inclusions could not be formed during secondary refining. Considering the microsegregation of solute elements and the equilibrium of TiN formation during solidification, TiN precipitated in the mushy zone when the solid fraction was close to 0.2. The growth of TiN was analyzed based on the diffusion-controlled growth model. With the increase in cooling rate, the time for TiN growth decreased and the size of TiN inclusions was diminished, which revealed the size distribution of TiN inclusions in the cast slab qualitatively.
基金This work was financially supported by the National Natural Science Foundation of China(No.51574026).
文摘Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.The SEN deposit profile was characterized as occurring in three major layers:(1)an eroded refractory layer;(2)an initial adhesive layer comprised an Al_(2)O_(3)-ZrO_(2) composite sub-layer and a dense Al_(2)O_(3)-based deposit sub-layer;and(3)a porous multiphase deposit layer mainly consisting of MgO·Al_(2)O_(3),CaO-Al_(2)O_(3),and CaO-TiOx.The MgO·Al_(2)O_(3)-rich inclusions did not adhere directly to the eroded refractory but were entrapped during the deposit growth.Results of inclusion characterization in the tundish revealed that the MgO·Al2O3-rich particles present in the tundish served as the primary source of clogging deposits.Furthermore,a novel cavity-induced adhesion model by circular approximation was established to explain the effects of complex inclusion characteristics and refractory material type on adhesion force.A high number of small MgO·Al_(2)O_(3) inclusions were expected to accelerate the buildup of clogging deposits.Improving the modification of MgO·Al_(2)O_(3)-rich inclusions in the size range of 2-4μm by Ca treatment was crucial to minimizing the risk of SEN clogging during the continuous casting of Ti-UPFS steels.