Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterize...Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterized by SEM and XRD. Mixture uniform design was used in the optimization of the electrolytic conditions; mathematical model was established according to the rate of wiping COD off, which revealed the relationship between the current intensity, time of electrolysis, the amount of doped Pr, and the ratio of area (SnOJTi:Al). On the basis of the analysis of the empirical model, the optimized parameters had been obtained; the rate of wiping COD off was up to 94.9%, it decreased from 392 to 20 mg/L. Experimental results showed that the electrocatalytic performance of the electrode doped with Pr was superior for the treatment of pharmaceutical wastewater.展开更多
Electrochemicaldegradation of2,4-dichlorophenol (2,4-DCP) in aqueous solutionwas investigated over Ti/SnO2-Sb anode. The factors influencing thedegradation rate, such as applied currentdensity (2-40 mA/cm2 ), pH ...Electrochemicaldegradation of2,4-dichlorophenol (2,4-DCP) in aqueous solutionwas investigated over Ti/SnO2-Sb anode. The factors influencing thedegradation rate, such as applied currentdensity (2-40 mA/cm2 ), pH (3-11) and initial concentration (5-200 mg/L)were evaluated. Thedegradation of2,4-DCP followed apparent pseudo first-order kinetics. Thedegradation ratio on Ti/SnO2 -Sb anode attained 〉 99.9% after 20 min of electrolysis at initial 5-200 mg/L concentrations at a constant currentdensity of 30 mA/cm2 with a 10 mmol/L sodium sulphate (Na2SO4 ) supporting electrolyte solution. The results showed that 2,4-DCP (100 mg/L)degradation and total organic carbon (TOC) removal ratio achieved 99.9% and 92.8%, respectively, at the optimal conditions after 30 min electrolysis. Under this condition, thedegradation rate constant (k) and thedegradation half-life (t1/2 )were 0.21 min1 and (2.8 ± 0.2) min, respectively. Mainly carboxylic acids (propanoic acid, maleic acid, propanedioic acid, acetic acid and oxalic acid) weredetected as intermediates. The energy efficiencies for2,4-DCPdegradation (5-200 mg/L)with Ti/SnO2-Sb anode ranged from 0.672 to 1.602 g/kWh. The Ti/SnO2-Sb anodewith a high activity to rapid organic oxidation could be employed todegrade chlorophenols, particularly2,4-DCP inwastewater.展开更多
为了研究满足压载水排放标准的处理系统,建立了可以实现单独控制的以钛基氧化锡钌(Ti/SnO2-RuO2)为阳极材料的电催化系统和紫外辐射复合压载水处理系统。以杜氏盐藻、青岛大扁藻、锥状克里斯普藻和四爿藻为目标处理微生物,对该系统进行...为了研究满足压载水排放标准的处理系统,建立了可以实现单独控制的以钛基氧化锡钌(Ti/SnO2-RuO2)为阳极材料的电催化系统和紫外辐射复合压载水处理系统。以杜氏盐藻、青岛大扁藻、锥状克里斯普藻和四爿藻为目标处理微生物,对该系统进行微藻灭活实验结果表明,Ti/SnO2-RuO2阳极电催化-UV复合系统克服了单独电催化系统高能耗、单独紫外辐射系统紫外灯衰减迅速的缺点,在紫外辐射出度45μW/cm2、电流密度130 m A/cm2、HRT为1.0 s的条件下,处理出水4 h后活藻数量可以达到国际海事组织(IMO)对压载水中10~50μm微生物的灭活要求。总剩余氧化物(TRO)含量会随时间推移而有衰减,且没有出现细胞光复活和修复现象,说明该复合系统具有理想的持续灭活作用。展开更多
The electrochemical oxidation of chlorimuron-ethyl on metry. The electrochemical behaviour of the electrode in a sodium Ti/SnO2-Sb2O5/PbO2 electrode was studied by cyclic voltamsulfate solution and in the mixture solu...The electrochemical oxidation of chlorimuron-ethyl on metry. The electrochemical behaviour of the electrode in a sodium Ti/SnO2-Sb2O5/PbO2 electrode was studied by cyclic voltamsulfate solution and in the mixture solution of sodium sulfate and chlorimuron-ethyl was studied. The experimental results of cyclic voltammetry show that the acidic medium was suitable for the efficient electrochemical oxidation of chlorimuron-ethyl. Some electro-generated reagent was formed in the electrolysis process and chlorimuron-ethyl could be oxidized by the electro-generated reagent. A Ti/SnO2-Sb2O5/PbO2 electrode was used as the anode and the electrolysis experiment was carried out under the optimized conditions. The electrolysis process was monitored by UV-Vis spectrometry and high performance liquid chromatography(HPLC), and the chemical oxygen demand(COD) was determined by the potassium dichromate method. The mechanism of chlorimuron-ethyl to be oxided was studied primarily by the cyclic voltammetry and UV-Vis spectrometry. The results of electrolysis experiment demonstrate the possibility of the electrode to be used as an anode for the electrochemical treatment of chlorimuron-ethyl contained in waste water.展开更多
基金the Fund of the Natural Science of Guangxi (0731015)
文摘Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterized by SEM and XRD. Mixture uniform design was used in the optimization of the electrolytic conditions; mathematical model was established according to the rate of wiping COD off, which revealed the relationship between the current intensity, time of electrolysis, the amount of doped Pr, and the ratio of area (SnOJTi:Al). On the basis of the analysis of the empirical model, the optimized parameters had been obtained; the rate of wiping COD off was up to 94.9%, it decreased from 392 to 20 mg/L. Experimental results showed that the electrocatalytic performance of the electrode doped with Pr was superior for the treatment of pharmaceutical wastewater.
基金supported by the National Science Foundation for Innovative Research Group of China(No.51121003)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110003110023)the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control of China
文摘Electrochemicaldegradation of2,4-dichlorophenol (2,4-DCP) in aqueous solutionwas investigated over Ti/SnO2-Sb anode. The factors influencing thedegradation rate, such as applied currentdensity (2-40 mA/cm2 ), pH (3-11) and initial concentration (5-200 mg/L)were evaluated. Thedegradation of2,4-DCP followed apparent pseudo first-order kinetics. Thedegradation ratio on Ti/SnO2 -Sb anode attained 〉 99.9% after 20 min of electrolysis at initial 5-200 mg/L concentrations at a constant currentdensity of 30 mA/cm2 with a 10 mmol/L sodium sulphate (Na2SO4 ) supporting electrolyte solution. The results showed that 2,4-DCP (100 mg/L)degradation and total organic carbon (TOC) removal ratio achieved 99.9% and 92.8%, respectively, at the optimal conditions after 30 min electrolysis. Under this condition, thedegradation rate constant (k) and thedegradation half-life (t1/2 )were 0.21 min1 and (2.8 ± 0.2) min, respectively. Mainly carboxylic acids (propanoic acid, maleic acid, propanedioic acid, acetic acid and oxalic acid) weredetected as intermediates. The energy efficiencies for2,4-DCPdegradation (5-200 mg/L)with Ti/SnO2-Sb anode ranged from 0.672 to 1.602 g/kWh. The Ti/SnO2-Sb anodewith a high activity to rapid organic oxidation could be employed todegrade chlorophenols, particularly2,4-DCP inwastewater.
文摘为了研究满足压载水排放标准的处理系统,建立了可以实现单独控制的以钛基氧化锡钌(Ti/SnO2-RuO2)为阳极材料的电催化系统和紫外辐射复合压载水处理系统。以杜氏盐藻、青岛大扁藻、锥状克里斯普藻和四爿藻为目标处理微生物,对该系统进行微藻灭活实验结果表明,Ti/SnO2-RuO2阳极电催化-UV复合系统克服了单独电催化系统高能耗、单独紫外辐射系统紫外灯衰减迅速的缺点,在紫外辐射出度45μW/cm2、电流密度130 m A/cm2、HRT为1.0 s的条件下,处理出水4 h后活藻数量可以达到国际海事组织(IMO)对压载水中10~50μm微生物的灭活要求。总剩余氧化物(TRO)含量会随时间推移而有衰减,且没有出现细胞光复活和修复现象,说明该复合系统具有理想的持续灭活作用。
基金Supported by the Science and Technology Foundation of the Education Department of Liaoning Province,China (No.2009A557)
文摘The electrochemical oxidation of chlorimuron-ethyl on metry. The electrochemical behaviour of the electrode in a sodium Ti/SnO2-Sb2O5/PbO2 electrode was studied by cyclic voltamsulfate solution and in the mixture solution of sodium sulfate and chlorimuron-ethyl was studied. The experimental results of cyclic voltammetry show that the acidic medium was suitable for the efficient electrochemical oxidation of chlorimuron-ethyl. Some electro-generated reagent was formed in the electrolysis process and chlorimuron-ethyl could be oxidized by the electro-generated reagent. A Ti/SnO2-Sb2O5/PbO2 electrode was used as the anode and the electrolysis experiment was carried out under the optimized conditions. The electrolysis process was monitored by UV-Vis spectrometry and high performance liquid chromatography(HPLC), and the chemical oxygen demand(COD) was determined by the potassium dichromate method. The mechanism of chlorimuron-ethyl to be oxided was studied primarily by the cyclic voltammetry and UV-Vis spectrometry. The results of electrolysis experiment demonstrate the possibility of the electrode to be used as an anode for the electrochemical treatment of chlorimuron-ethyl contained in waste water.