A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-Ir...A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-IrO_2-SnO_2/Ti anodes. The influences of electric current density, inlet liquid circulation flowrate, high gravity factor, sodium chloride concentration,and initial pH value on phenol degradation efficiency were investigated, with the optimal operating conditions determined. The results showed that under the optimal operating conditions covering a current density of 35 mA/cm^2, an inlet liquid circulation flowrate of 48 L/h, a high gravity factor of 20, a sodium chloride concentration of 8.5 g/L, an initial pH value of 6.5, a reaction time of 100 min, and an initial phenol concentration of 500 mg/L, the efficiency for removal of phenol reached 99.7%, which was improved by 10.4% as compared to that achieved in the normal gravity field. The tendency regarding the change in efficiency for removal of phenol, total organic carbon(TOC), and chemical oxygen demand(COD)over time was studied. The intermediates and degradation pathway of phenol were deduced by high performance liquid chromatography(HPLC).展开更多
In the work,we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate(NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2(designed as NTO...In the work,we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate(NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2(designed as NTO/Ti3C2).Benefiting from the inherent structural and componential superiorities,the resulted NTO/Ti3C2 composite exhibits long-duration cycling stability and superior rate behaviors when evaluated as a hybrid anode for advanced SIBs,which delivers a reversible and stable capacity of^82 mAh/g even after 1900 cycles at 2000 mA/g for SIBs.展开更多
Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe...Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.展开更多
Al/α-PbO2/β-PbO2 composite electrodes doped with rare earth oxide (CeO2) were prepared by anodic oxidation method investigate the influence of nano-CeO2 dopants on the properties of Al/α-PbO2/β-PbO2-CeO2 electro...Al/α-PbO2/β-PbO2 composite electrodes doped with rare earth oxide (CeO2) were prepared by anodic oxidation method investigate the influence of nano-CeO2 dopants on the properties of Al/α-PbO2/β-PbO2-CeO2 electrodes and the impact of α-PbO2 as the intermediate layer. The results show that using α-PbO2 as the intermediate layer will benefit the crystallization of β-PbO2 and β-PbO2 is more suitable as the surface layer than α-PbO2. CeO2 dopants change the crystallite size and crystal structure, enhance the catalytic activity, and even change the deposition mechanism of PbO2. The doping of CeO2 in the PbO2 electrodes can enhance the electro-catalytic activity, which is helpful for oxygen evolution, and therefore reduce the cell voltage.展开更多
This study investigated the morphology, structure and tribological properties of the three samples produced by anodic oxidation of Ti10 V2 Fe3 Al in a sulfuric/phosphoric acid electrolyte(SPA), a near-neutral sodium t...This study investigated the morphology, structure and tribological properties of the three samples produced by anodic oxidation of Ti10 V2 Fe3 Al in a sulfuric/phosphoric acid electrolyte(SPA), a near-neutral sodium tartrate electrolyte without nanoparticles(STA) and a nearneutral sodium tartrate electrolyte with polytetrafluoroethylene(PTFE) nanoparticles(CA) in suspension. The STA film had a surface full of bulges and cracks, the SPA film was porous, and the CA film was nanoporous. The SPA film was mainly composed of anatase TiO2, whereas the STA and CA films were mainly amorphous TiO2 with little anatase. The tribological tests indicated that the SPA sample had a lower wear resistance than the titanium alloy substrate, which was attributed to the shedding of abrasive debris, leading to rapid wear. Both STA and CA samples exhibited much lower wear rates than the titanium alloy substrate, and CA sample displayed the lowest wear rate attributed to the formation of a lubricating layer by PTFE nanoparticles. The wear mechanisms are proposed.展开更多
Compound Zn2Sn0.8Ti0.2O4 was synthesized by a hydrothermal method in which SnCl4-5H2O,TiCl4,ZnCl2 and N2H4-H2O were used as reactants.The composite Zn2Sn0.8Ti0.2O4/C was then prepared through a carbothermic reduction ...Compound Zn2Sn0.8Ti0.2O4 was synthesized by a hydrothermal method in which SnCl4-5H2O,TiCl4,ZnCl2 and N2H4-H2O were used as reactants.The composite Zn2Sn0.8Ti0.2O4/C was then prepared through a carbothermic reduction process using the as-prepared Zn2Sn0.8Ti0.2O4 and glucose as reactants.The structure,morphology and electrochemical properties of the as-prepared products were investigated by XRD,XPS,TEM and electrochemical measurements.In addition,electrochemical Li insertion/extraction in composite Zn2Sn0.8Ti0.2O4/C were examined by ex situ XRD and SEM.The first discharge capacity of Zn2SnO4 is about 1670.8 mA-h/g,with a capacity retain of 342.7 mA-h/g in the 40th cycle at a constant current density of 100 mA/g in the voltage range of 0.05-3.0 V.Comparing with the Zn2SnO4,some improved electrochemical properties are obtained for Zn2Sn0.8Ti0.2O4,Zn2SnO4/C and Zn2Sn0.8Ti0.2O4/C.The composite Zn2Sn0.8Ti0.2O4/C shows the best electrochemical properties,and its first discharge capacity is about 1530.0 mA-h/g,with a capacity retain of 479.1 mA-h/g the 100th cycle.展开更多
The chlor-alkali industry faces high energy consumption,competition between the chlorine evolution reaction(CER)and oxygen evolution reaction(OER),and challenges,such as high costs and poor stability of precious metal...The chlor-alkali industry faces high energy consumption,competition between the chlorine evolution reaction(CER)and oxygen evolution reaction(OER),and challenges,such as high costs and poor stability of precious metal catalysts in chlorine production.At the same time,the treatment of antibiotic pollution urgently requires efficient degradation technologies.In this study,a non-precious metal anode of CuCo_(2)S_(4)/Ti(CCS/Ti)with a nanosheet structure was constructed on a foam titanium substrate using a hydrothermal method,achieving dual-functional applications for efficient chlorine evolution and the degradation of ofloxacin(OFX).The electrode exhibits an overpotential of 1.23 V(vs.Ag/AgCl)at a current density of 100 mA·cm^(−2),with a Faradaic efficiency of 95.66%,and remains stable for 180 h.Density functional theory(DFT)calculations indicate that the chlorine evolution mechanism on the CCS/Ti electrode primarily follows the Volmer-Heyrovsky pathway.Furthermore,the CCS/Ti electrode achieves a degradation efficiency of 91.34%for OFX within 5 min and demonstrates broad-spectrum degradation capabilities for various fluoroquinolone antibiotics(>83.05%).This study provides an efficient and cost-effective new approach for catalyst material design,contributing to the greening of the chlor-alkali industry and the treatment of refractory pollutants.展开更多
基金financially supported by the Nature Science Foundation of China (Grant No.U1610106)the Nature Science Foundation of China (Grant No.21703208)
文摘A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-IrO_2-SnO_2/Ti anodes. The influences of electric current density, inlet liquid circulation flowrate, high gravity factor, sodium chloride concentration,and initial pH value on phenol degradation efficiency were investigated, with the optimal operating conditions determined. The results showed that under the optimal operating conditions covering a current density of 35 mA/cm^2, an inlet liquid circulation flowrate of 48 L/h, a high gravity factor of 20, a sodium chloride concentration of 8.5 g/L, an initial pH value of 6.5, a reaction time of 100 min, and an initial phenol concentration of 500 mg/L, the efficiency for removal of phenol reached 99.7%, which was improved by 10.4% as compared to that achieved in the normal gravity field. The tendency regarding the change in efficiency for removal of phenol, total organic carbon(TOC), and chemical oxygen demand(COD)over time was studied. The intermediates and degradation pathway of phenol were deduced by high performance liquid chromatography(HPLC).
基金financial support from National Natural Science Foundation of China(Nos.51772127and 51772131)Taishan Scholars(No.ts201712050)+1 种基金Major Program of Shandong Province Natural Science Foundation(No.ZR2018ZB0317)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong。
文摘In the work,we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate(NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2(designed as NTO/Ti3C2).Benefiting from the inherent structural and componential superiorities,the resulted NTO/Ti3C2 composite exhibits long-duration cycling stability and superior rate behaviors when evaluated as a hybrid anode for advanced SIBs,which delivers a reversible and stable capacity of^82 mAh/g even after 1900 cycles at 2000 mA/g for SIBs.
基金Project(1254G024)supported by the Young Core Instructor Foundation from Heilongjiang Educational Committee,ChinaProject(2012RFQXS113)supported by Scientific and Technological Innovation Talents of Harbin,China
文摘Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.
基金Project(50964008)supported by the National Natural Science Foundation of ChinaProject(2010287)supported by Analysis and Testing Foundation of Kunming University of Science and Technology,China
文摘Al/α-PbO2/β-PbO2 composite electrodes doped with rare earth oxide (CeO2) were prepared by anodic oxidation method investigate the influence of nano-CeO2 dopants on the properties of Al/α-PbO2/β-PbO2-CeO2 electrodes and the impact of α-PbO2 as the intermediate layer. The results show that using α-PbO2 as the intermediate layer will benefit the crystallization of β-PbO2 and β-PbO2 is more suitable as the surface layer than α-PbO2. CeO2 dopants change the crystallite size and crystal structure, enhance the catalytic activity, and even change the deposition mechanism of PbO2. The doping of CeO2 in the PbO2 electrodes can enhance the electro-catalytic activity, which is helpful for oxygen evolution, and therefore reduce the cell voltage.
基金financially supported by the Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2016jcyjA0388)the National Natural Science Foundation of China(No.51701029),the Research and Development Project from COMAC and BOEING(No.2017-GT-088)+2 种基金China Postdoctoral Science Foundation Funded Project(Nos.2017M620410 and 2018T110942)the Chongqing Postdoctoral Scientific Research Foundation(No.Xm2017010)the Fundamental Research Funds for the Central Universities(No.2018CDGFCL005)。
文摘This study investigated the morphology, structure and tribological properties of the three samples produced by anodic oxidation of Ti10 V2 Fe3 Al in a sulfuric/phosphoric acid electrolyte(SPA), a near-neutral sodium tartrate electrolyte without nanoparticles(STA) and a nearneutral sodium tartrate electrolyte with polytetrafluoroethylene(PTFE) nanoparticles(CA) in suspension. The STA film had a surface full of bulges and cracks, the SPA film was porous, and the CA film was nanoporous. The SPA film was mainly composed of anatase TiO2, whereas the STA and CA films were mainly amorphous TiO2 with little anatase. The tribological tests indicated that the SPA sample had a lower wear resistance than the titanium alloy substrate, which was attributed to the shedding of abrasive debris, leading to rapid wear. Both STA and CA samples exhibited much lower wear rates than the titanium alloy substrate, and CA sample displayed the lowest wear rate attributed to the formation of a lubricating layer by PTFE nanoparticles. The wear mechanisms are proposed.
基金Project (51004028) supported by the National Natural Science Foundation of China
文摘Compound Zn2Sn0.8Ti0.2O4 was synthesized by a hydrothermal method in which SnCl4-5H2O,TiCl4,ZnCl2 and N2H4-H2O were used as reactants.The composite Zn2Sn0.8Ti0.2O4/C was then prepared through a carbothermic reduction process using the as-prepared Zn2Sn0.8Ti0.2O4 and glucose as reactants.The structure,morphology and electrochemical properties of the as-prepared products were investigated by XRD,XPS,TEM and electrochemical measurements.In addition,electrochemical Li insertion/extraction in composite Zn2Sn0.8Ti0.2O4/C were examined by ex situ XRD and SEM.The first discharge capacity of Zn2SnO4 is about 1670.8 mA-h/g,with a capacity retain of 342.7 mA-h/g in the 40th cycle at a constant current density of 100 mA/g in the voltage range of 0.05-3.0 V.Comparing with the Zn2SnO4,some improved electrochemical properties are obtained for Zn2Sn0.8Ti0.2O4,Zn2SnO4/C and Zn2Sn0.8Ti0.2O4/C.The composite Zn2Sn0.8Ti0.2O4/C shows the best electrochemical properties,and its first discharge capacity is about 1530.0 mA-h/g,with a capacity retain of 479.1 mA-h/g the 100th cycle.
基金supported by the Major Science and Technology Projects in Yunnan Province(China)(No.202302AE090014)the National Natural Science Foundation of China(No.5196080497).
文摘The chlor-alkali industry faces high energy consumption,competition between the chlorine evolution reaction(CER)and oxygen evolution reaction(OER),and challenges,such as high costs and poor stability of precious metal catalysts in chlorine production.At the same time,the treatment of antibiotic pollution urgently requires efficient degradation technologies.In this study,a non-precious metal anode of CuCo_(2)S_(4)/Ti(CCS/Ti)with a nanosheet structure was constructed on a foam titanium substrate using a hydrothermal method,achieving dual-functional applications for efficient chlorine evolution and the degradation of ofloxacin(OFX).The electrode exhibits an overpotential of 1.23 V(vs.Ag/AgCl)at a current density of 100 mA·cm^(−2),with a Faradaic efficiency of 95.66%,and remains stable for 180 h.Density functional theory(DFT)calculations indicate that the chlorine evolution mechanism on the CCS/Ti electrode primarily follows the Volmer-Heyrovsky pathway.Furthermore,the CCS/Ti electrode achieves a degradation efficiency of 91.34%for OFX within 5 min and demonstrates broad-spectrum degradation capabilities for various fluoroquinolone antibiotics(>83.05%).This study provides an efficient and cost-effective new approach for catalyst material design,contributing to the greening of the chlor-alkali industry and the treatment of refractory pollutants.