Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeM...Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.展开更多
Titanium/magnesium alloy bimetal composites show promising prospects for lightweight applications.The Ti/Mg bimetal composite was fabricated in Ti−6Al−4V pyramidal lattice structure via AZ91D melt infiltration.Compara...Titanium/magnesium alloy bimetal composites show promising prospects for lightweight applications.The Ti/Mg bimetal composite was fabricated in Ti−6Al−4V pyramidal lattice structure via AZ91D melt infiltration.Comparative analysis of the tensile and compressive properties was conducted between the composite and its constituent materials(Ti−6Al−4V lattice structure and AZ91D matrix).The tensile strength of the composite(95.9 MPa)was comparable to that of the Ti−6Al−4V lattice structure(94.4 MPa)but lower than that of the AZ91D alloy(120.8 MPa)due to gaps at the bimetal interfaces hindering load transfer during tension.The composite exhibited greater elongation(1.7%)compared to AZ91D(1.4%)alloy but less than the Ti−6Al−4V lattice structure(2.6%).The compressive performance of the composite outperformed that of the Ti−6Al−4V lattice structure,underscoring the significance of the AZ91D alloy in compressive deformation.Fracture analysis indicated that the predominant failure reasons in both the composite and lattice structures were attributed to the breakage of lattice struts at nodes caused by the stress concentration.展开更多
The Mg−1Zn−1Sn and Mg−1Zn−1Sn−0.2Ca alloy scaffolds were prepared via infiltration casting using 3D-printed Ti templates to achieve complete and accurate control of the pore structure.The results indicate that the act...The Mg−1Zn−1Sn and Mg−1Zn−1Sn−0.2Ca alloy scaffolds were prepared via infiltration casting using 3D-printed Ti templates to achieve complete and accurate control of the pore structure.The results indicate that the actual porosity and pore size of the prepared P model for each pore size are greater than the designed values.The addition of Ca changes the second phase of the alloy from Mg_(2)Sn to CaMgSn and refines its microstructure.The compressive yield strength and compressive modulus of the Mg−1Zn−1Sn−0.2Ca alloy scaffold reach 32.61 MPa and 0.23 GPa,respectively.The corrosion current density is measured at 14.64μA/cm^(2),with an instantaneous corrosion rate of 0.335 mm/a.Both scaffolds exhibit excellent biocompatibility and no cytotoxicity.Additionally,the antibacterial effects of both alloys on E.coli are greater than 97.81%.These results indicate that Mg alloy scaffolds have great potential for clinical applications.展开更多
High temperature tensile were performed by using a thermo-mechanical GW1600 to simulate the deformation of Ti microalloy steels at high temperatures and low deformation rates similar to those during continuous casting...High temperature tensile were performed by using a thermo-mechanical GW1600 to simulate the deformation of Ti microalloy steels at high temperatures and low deformation rates similar to those during continuous casting.An equivalent austenite diameter was proposed,taking into account the weakening effects of proeutectoid ferrite films and Ti carbonitride precipitation.Based on this,a hot ductility prediction model for the slab was established to investigated hot ductility.The results show that as Ti content increases,the hot ductility of Ti microalloy steel initially increases and then decreases.At low Ti content,the pinning effect of Ti carbonitrides increases with the increase in Ti content,which inhibits grain coarsening for improving hot ductility.As Ti content increases,the size of carbonitrides grows,weakening the pinning effect and leading to austenite grain coarsening.Simultaneously,the formation of Ti carbonitrides inhibits proeutectoid ferrite film formation,leading to a reduction in its thickness.These combined factors reduce the hot ductility of the continuous casting steel.According to the hot ductility prediction model,in order of severity,the factors affecting hot ductility are:proeutectoid ferrite film,chain-like nanoscale Ti carbonitrides,austenite grain size,and dispersed nanoscale Ti carbonitrides.An accuracy error of less than 10%is shown by the model.展开更多
The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model...The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model for two-stage austenite growth under varyingcooling rates was established by incorporating the effect of second-phase pinning and high-temperature ferrite-austenite phase transform-ation and growth theory.The results indicate that with 0.02wt%Ti,the high-temperature ferrite growth exhibits typical parabolic growthcharacteristics.When the Ti content increases to 0.04wt%,the high-temperature ferrite grain boundary migration rate significantly slowsduring the initial solidification stage.The predicted austenite grain sizes for 0.02wt%Ti microalloyed steel at the center,quarter,and sur-face of the slab are 5592,3529,and 1524μm,respectively.For 0.04wt%Ti microalloyed steel,the austenite grain sizes are 4074,2942,and 1179μm at the same positions.The average error is within 5%.As the Ti content increases from 0.02wt% to 0.04wt%,the austenitegrain refinement at the center is most significant,with an average grain size reduction of 27.14%.展开更多
The probability of phase formation was predicted using k-nearest neighbor algorithm(KNN)and artificial neural network algorithm(ANN).Additionally,the composition ranges of Ti,Cu,Ni,and Hf in 40 unknown amorphous alloy...The probability of phase formation was predicted using k-nearest neighbor algorithm(KNN)and artificial neural network algorithm(ANN).Additionally,the composition ranges of Ti,Cu,Ni,and Hf in 40 unknown amorphous alloy composites(AACs)were predicted using ANN.The predicted alloys were then experimentally verified through X-ray diffraction(XRD)and high-resolution transmission electron microscopy(HRTEM).The prediction accuracies of the ANN for AM and IM phases are 93.12%and 85.16%,respectively,while the prediction accuracies of KNN for AM and IM phases are 93%and 84%,respectively.It is observed that when the contents of Ti,Cu,Ni,and Hf fall within the ranges of 32.7−34.5 at.%,16.4−17.3 at.%,30.9−32.7 at.%,and 17.3−18.3 at.%,respectively,it is more likely to form AACs.Based on the results of XRD and HRTEM,the Ti_(34)Cu17Ni_(31.36)Hf_(17.64)and Ti_(36)Cu_(18)Ni_(29.44)Hf_(16.56)alloys are identified as good AACs,which are in closely consistent with the predicted amorphous alloy compositions.展开更多
The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculat...The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.展开更多
There are few studies on the preparation of magnesium matrix composites(MMCs)by rapid solidification.This study aims to add minor amounts of Ti particles to AZ91 alloy and prepare AZ91/Ti_(P) MMC ribbon by Melt-Spinni...There are few studies on the preparation of magnesium matrix composites(MMCs)by rapid solidification.This study aims to add minor amounts of Ti particles to AZ91 alloy and prepare AZ91/Ti_(P) MMC ribbon by Melt-Spinning(MS).The effects of Ti particle content on the microstructure and mechanical properties of AZ91/Ti_(P) ribbon were studied by scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray diffraction(XRD),transmission electron microscopy(TEM),three-dimensional profiling(3D-P)and calculation of supercooling rate.The results show that the grain refinement of AZ91 ribbon prepared by rapid solidification is very significant and the grain refinement is further improved with the increase of Ti particle content;at the same time,the growth of β-Mg_(17)Al_(12) is inhibited,and the interface reaction between Ti and Mg leads to the formation of interfaces around Ti particles.These nano-scale Ti_(3)Al and Al_(3)Ti interface compounds uniformly wrap the Ti particles.It is believed that the addition of Ti particles not only helps to refine the surrounding grains,but also increases the dislocations in the MMC ribbon and forms a good interface,thereby improving the mechanical properties.Compared with AZ91 alloy ribbon,the yield strength and tensile strength of MMC material containing 5 wt.%Ti particles increased by 25.0%and 22.7% respectively.The elongation only decreased by 10.9%.AZ91/5 wt.%Ti_(P) ribbon has a better balance between high strength and high elongation.The analysis shows that the strengthening effect of this mechanical property is mainly attributed to fine grain strengthening,dislocation strengthening and non-basal slip.展开更多
In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable struc...In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable structure with expanded crystal lattice distance which improves Li ion diffusion kinetics.The dopants have suppressed the growth of primary particles,formed a coating on the surface,and promoted the elongated morphology.Moreover,the mechanical strength of these particles has increased,as confirmed by the nanoindentation test,which can help suppress particle cracking.The detrimental H2-H3 phase transition has been postponed by 90 mV allowing the cathode to operate at a higher voltage.A better cycling stability over 100 cycles with 69%capacity retention has been observed.We believe this work points out a way to improve the cycling performance,Coulombic efficiency and capacity retention in Ni-rich cathodes.展开更多
Synergistically and simultaneously enhancing strength and ductility has been a major challenge for the development and applications of titanium matrix composites.Herein,a new design methodology for Ti_(2)Cu/Ti_(6)Al4V...Synergistically and simultaneously enhancing strength and ductility has been a major challenge for the development and applications of titanium matrix composites.Herein,a new design methodology for Ti_(2)Cu/Ti_(6)Al4V composites with superior strength and ductility is reported.展开更多
High Nbβ/γ-TiAl(HNBG)intermetallics and Ni-based superalloy(IN718)were diffusion-bonded using pure Ti foil interlayer under pulse current.The microstructure,element segregation,and mechanical properties of HNBG/Ti/I...High Nbβ/γ-TiAl(HNBG)intermetallics and Ni-based superalloy(IN718)were diffusion-bonded using pure Ti foil interlayer under pulse current.The microstructure,element segregation,and mechanical properties of HNBG/Ti/IN718 joint were investigated.The effect of Ti interlayer on microstructure and mechanical properties of the joint was discussed.The typical microstructure of HNBG/Ti/IN718 joint was HNBG//β/B2,τ_(3)-NiAl_(3)Ti_(2)//α_(2)-Ti_(3)Al//α-Ti+δ-NiTi_(2),β-Ti//δ-NiTi_(2)//β2-(Ni,Fe)Ti//Cr/Fe-richη-Ni_(3)Ti,η-Ni_(3)Ti,α-Cr,δ-Ni_(3)Nb//η-Ni_(3)Ti,γ-Ni,δ-Ni_(3)Nb//IN718.The gaps and Kirkendall voids exhibited a gradual disappearance with increasing bonding temperature.The mechanism of Cr,Fe and Nb elements segregation was that NiTi phase hindered the diffusion of them.The nano-indentation results demonstrated that diffusion zones on IN718 alloy side had higher hardness.The maximum shear strength of the joint(326 MPa)was achieved at bonding parameters of 850℃,20 min and 10 MPa.The fracture occurred in Zones IV and V,and the fracture modes were brittle fracture and cleavage fracture.The introduction of Ti interlayer resulted in improved microstructure and enhanced bonding strength of the joint.展开更多
The corrosion behavior of Ti–6Al–2Zr–1Mo–1V(TA15)alloy fabricated through selective laser melting(SLM)technology and traditional wrought technology in hydrochloric acid solutions was investigated using electrochem...The corrosion behavior of Ti–6Al–2Zr–1Mo–1V(TA15)alloy fabricated through selective laser melting(SLM)technology and traditional wrought technology in hydrochloric acid solutions was investigated using electrochemical testing and surface characterizations,including electron backscattered diffraction,scanning electron microscopy,and X-ray photoelectron spectroscopy analyses.The results showed that both types of TA15 alloy underwent spontaneous passivation reactions in HCl solution,and with the increase in HCl concentration,the surface of SLM-TA15 sample exhibited larger and deeper pits.In comparison to SLM-TA15 sample,the pits on the wrought-TA15 sample were shallower and the surface was more uniform.Analysis of the passive current density,breakdown potential,and electrochemical impedance revealed that the corrosion resistance of both alloys decreased as the concentration of HCl increased,and SLM sample exhibited poorer corrosion resistance compared with the wrought sample.Analysis of Mott–Schottky test curves and calculation of passive film thickness indicated that the passive film of wrought-TA15 sample was superior to that of SLM-TA15 sample.展开更多
The high-pressure phase diagram of the Nb-Ti binary system at 0 K is explored by systematic crystal structure prediction.The results highlight a novel niobium-rich bcc phase,Nb_(7)Ti,which is the only dynamically stab...The high-pressure phase diagram of the Nb-Ti binary system at 0 K is explored by systematic crystal structure prediction.The results highlight a novel niobium-rich bcc phase,Nb_(7)Ti,which is the only dynamically stable ordered Nb-Ti compound under ambient pressure.Extensive first-principles calculations have provided insights into the electronic structure,bonding and superconducting properties of Nb_(7)Ti.The superconducting transition temperature(T_(c))for Nb_(7)Ti at ambient pressure is estimated within the framework of BCS theory to be about 17.5 K,which is significantly higher—nearly double—that of the widely utilized NbTi alloy.Furthermore,the results unveil that the high T_(c) is mainly attributed to the unique ordered lattice along with the strong electron-phonon coupling driven by interatomic interactions at mid-frequency and phonon softening induced by low-frequency Fermi surface nesting.Valuable insights are provided for the subsequent synthesis of application-oriented superconductors at low pressure.展开更多
Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with ...Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.展开更多
The microstructure and mechanical properties of the Ti-5Al-5Mo-5V-1Cr-1Fe(Ti-55511)alloy under different strains were investigated through the design of step-shaped die forging.The results indicate that continuous dyn...The microstructure and mechanical properties of the Ti-5Al-5Mo-5V-1Cr-1Fe(Ti-55511)alloy under different strains were investigated through the design of step-shaped die forging.The results indicate that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur in the high strain region.The orientation of the grains produced by CDRX is random and does not weaken the fiber texture.<100>-oriented grains expand gradually with increasing strain,thereby enhancing the strength of{100}texture.Significant anisotropic mechanical properties are observed in the large strain region and analyzed through in-situ tensile experiments.When the loading direction is parallel to the longitudinal(L)direction,strain concentration is observed near the dynamically recrystallized(DRXed)grains and inside grains oriented along<100>,leading to crack initiation.Furthermore,the small angle between the loading direction and the c-axis hinders the activation of prismatic and basal slip,thereby enhancing the strength.When the loading direction is parallel to the short transverse(ST)direction,cracks are initiated not only within grains oriented along<100>,but also at the grain boundaries.Regarding impact toughness,the elongatedβgrains in the L direction enhance the resistance to crack propagation.展开更多
Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat trea...Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.展开更多
基金supported by the Natural Science Foundation of Guangdong Province(2024A1515010908,2025A1515011103)Opening Project of Hubei Key Laboratory of Plasma Chemistry and Advanced Materials(2024P11)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20233104)National Natural Science Foundation of China(22202087)Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(STRZ202418)。
文摘Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.
基金the financial support from the National Natural Science Foundation of China(Nos.51875062,52205336)。
文摘Titanium/magnesium alloy bimetal composites show promising prospects for lightweight applications.The Ti/Mg bimetal composite was fabricated in Ti−6Al−4V pyramidal lattice structure via AZ91D melt infiltration.Comparative analysis of the tensile and compressive properties was conducted between the composite and its constituent materials(Ti−6Al−4V lattice structure and AZ91D matrix).The tensile strength of the composite(95.9 MPa)was comparable to that of the Ti−6Al−4V lattice structure(94.4 MPa)but lower than that of the AZ91D alloy(120.8 MPa)due to gaps at the bimetal interfaces hindering load transfer during tension.The composite exhibited greater elongation(1.7%)compared to AZ91D(1.4%)alloy but less than the Ti−6Al−4V lattice structure(2.6%).The compressive performance of the composite outperformed that of the Ti−6Al−4V lattice structure,underscoring the significance of the AZ91D alloy in compressive deformation.Fracture analysis indicated that the predominant failure reasons in both the composite and lattice structures were attributed to the breakage of lattice struts at nodes caused by the stress concentration.
基金the financial support for this work from the National Natural Science Foundation of China(Nos.52171241,52373251,52201301,51801137)Natural Science Foundation of Tianjin City,China(No.22JCQNJC00750)Tianjin University of Technology Graduate Research Innovation Project,China(No.YJ2235)。
文摘The Mg−1Zn−1Sn and Mg−1Zn−1Sn−0.2Ca alloy scaffolds were prepared via infiltration casting using 3D-printed Ti templates to achieve complete and accurate control of the pore structure.The results indicate that the actual porosity and pore size of the prepared P model for each pore size are greater than the designed values.The addition of Ca changes the second phase of the alloy from Mg_(2)Sn to CaMgSn and refines its microstructure.The compressive yield strength and compressive modulus of the Mg−1Zn−1Sn−0.2Ca alloy scaffold reach 32.61 MPa and 0.23 GPa,respectively.The corrosion current density is measured at 14.64μA/cm^(2),with an instantaneous corrosion rate of 0.335 mm/a.Both scaffolds exhibit excellent biocompatibility and no cytotoxicity.Additionally,the antibacterial effects of both alloys on E.coli are greater than 97.81%.These results indicate that Mg alloy scaffolds have great potential for clinical applications.
基金financially supported by the National Natural Science Foundation of China(No.51974078)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project,Nos.2022 JH25/10200003 and 2023 JH2/101800058)the Fundamental Research Funds for the Central Universities(No.N25YJS003).
文摘High temperature tensile were performed by using a thermo-mechanical GW1600 to simulate the deformation of Ti microalloy steels at high temperatures and low deformation rates similar to those during continuous casting.An equivalent austenite diameter was proposed,taking into account the weakening effects of proeutectoid ferrite films and Ti carbonitride precipitation.Based on this,a hot ductility prediction model for the slab was established to investigated hot ductility.The results show that as Ti content increases,the hot ductility of Ti microalloy steel initially increases and then decreases.At low Ti content,the pinning effect of Ti carbonitrides increases with the increase in Ti content,which inhibits grain coarsening for improving hot ductility.As Ti content increases,the size of carbonitrides grows,weakening the pinning effect and leading to austenite grain coarsening.Simultaneously,the formation of Ti carbonitrides inhibits proeutectoid ferrite film formation,leading to a reduction in its thickness.These combined factors reduce the hot ductility of the continuous casting steel.According to the hot ductility prediction model,in order of severity,the factors affecting hot ductility are:proeutectoid ferrite film,chain-like nanoscale Ti carbonitrides,austenite grain size,and dispersed nanoscale Ti carbonitrides.An accuracy error of less than 10%is shown by the model.
基金financially supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project,Nos.2022JH25/10200003 and 2023JH2/101800058)the Fundamental Research Funds for the Central Universities(Nos.N25YJS003 and N25DCG006)。
文摘The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model for two-stage austenite growth under varyingcooling rates was established by incorporating the effect of second-phase pinning and high-temperature ferrite-austenite phase transform-ation and growth theory.The results indicate that with 0.02wt%Ti,the high-temperature ferrite growth exhibits typical parabolic growthcharacteristics.When the Ti content increases to 0.04wt%,the high-temperature ferrite grain boundary migration rate significantly slowsduring the initial solidification stage.The predicted austenite grain sizes for 0.02wt%Ti microalloyed steel at the center,quarter,and sur-face of the slab are 5592,3529,and 1524μm,respectively.For 0.04wt%Ti microalloyed steel,the austenite grain sizes are 4074,2942,and 1179μm at the same positions.The average error is within 5%.As the Ti content increases from 0.02wt% to 0.04wt%,the austenitegrain refinement at the center is most significant,with an average grain size reduction of 27.14%.
基金supported by the National Natural Science Foundation of China(No.51601019)the Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515010233)+1 种基金the Key Project of Shaanxi Province of Qinchuangyuan“Scientist and Engineer”Team Construction,China(No.2023KXJ-123)the Natural Science Foundation of Shaanxi Province,China(No.2024JC-YBMS-014).
文摘The probability of phase formation was predicted using k-nearest neighbor algorithm(KNN)and artificial neural network algorithm(ANN).Additionally,the composition ranges of Ti,Cu,Ni,and Hf in 40 unknown amorphous alloy composites(AACs)were predicted using ANN.The predicted alloys were then experimentally verified through X-ray diffraction(XRD)and high-resolution transmission electron microscopy(HRTEM).The prediction accuracies of the ANN for AM and IM phases are 93.12%and 85.16%,respectively,while the prediction accuracies of KNN for AM and IM phases are 93%and 84%,respectively.It is observed that when the contents of Ti,Cu,Ni,and Hf fall within the ranges of 32.7−34.5 at.%,16.4−17.3 at.%,30.9−32.7 at.%,and 17.3−18.3 at.%,respectively,it is more likely to form AACs.Based on the results of XRD and HRTEM,the Ti_(34)Cu17Ni_(31.36)Hf_(17.64)and Ti_(36)Cu_(18)Ni_(29.44)Hf_(16.56)alloys are identified as good AACs,which are in closely consistent with the predicted amorphous alloy compositions.
基金National Key R&D Program of China(2022YFB3706901)National Natural Science Foundation of China(52274382)Key Research and Development Program of Hubei Province(2022BAA024)。
文摘The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.
基金supported by the National Key Research and Development Program of China(2022YFB3708400)the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)+1 种基金the Guangdong Academy of Science Fund(2020GDASYL-20200101001)Evaluation Project of Guangdong Provincial Key Laboratory(2023B1212060043).
文摘There are few studies on the preparation of magnesium matrix composites(MMCs)by rapid solidification.This study aims to add minor amounts of Ti particles to AZ91 alloy and prepare AZ91/Ti_(P) MMC ribbon by Melt-Spinning(MS).The effects of Ti particle content on the microstructure and mechanical properties of AZ91/Ti_(P) ribbon were studied by scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray diffraction(XRD),transmission electron microscopy(TEM),three-dimensional profiling(3D-P)and calculation of supercooling rate.The results show that the grain refinement of AZ91 ribbon prepared by rapid solidification is very significant and the grain refinement is further improved with the increase of Ti particle content;at the same time,the growth of β-Mg_(17)Al_(12) is inhibited,and the interface reaction between Ti and Mg leads to the formation of interfaces around Ti particles.These nano-scale Ti_(3)Al and Al_(3)Ti interface compounds uniformly wrap the Ti particles.It is believed that the addition of Ti particles not only helps to refine the surrounding grains,but also increases the dislocations in the MMC ribbon and forms a good interface,thereby improving the mechanical properties.Compared with AZ91 alloy ribbon,the yield strength and tensile strength of MMC material containing 5 wt.%Ti particles increased by 25.0%and 22.7% respectively.The elongation only decreased by 10.9%.AZ91/5 wt.%Ti_(P) ribbon has a better balance between high strength and high elongation.The analysis shows that the strengthening effect of this mechanical property is mainly attributed to fine grain strengthening,dislocation strengthening and non-basal slip.
基金support from Queensland University of Technology,Brisbane,Queensland,Australiafinancial support from ARC Discovery Project(DP210103266).
文摘In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable structure with expanded crystal lattice distance which improves Li ion diffusion kinetics.The dopants have suppressed the growth of primary particles,formed a coating on the surface,and promoted the elongated morphology.Moreover,the mechanical strength of these particles has increased,as confirmed by the nanoindentation test,which can help suppress particle cracking.The detrimental H2-H3 phase transition has been postponed by 90 mV allowing the cathode to operate at a higher voltage.A better cycling stability over 100 cycles with 69%capacity retention has been observed.We believe this work points out a way to improve the cycling performance,Coulombic efficiency and capacity retention in Ni-rich cathodes.
基金supported by the National Natural Science Foundation of China(NSFC,No.52271138)the Key Research and Development Projects of Shaanxi Province(Nos.2023-YBGY-433 and 2024GX-YBXM-356)+1 种基金Xi'an Talent Program Young Innovative Talents(No.XAYC 2023030)the Science and Technology Development Plan Project of Shaanxi Province(No.S2024-JC-QN-2642).
文摘Synergistically and simultaneously enhancing strength and ductility has been a major challenge for the development and applications of titanium matrix composites.Herein,a new design methodology for Ti_(2)Cu/Ti_(6)Al4V composites with superior strength and ductility is reported.
基金supported by the National Natural Science Foundation of China(Nos.52071021,51871012)Beijing Natural Science Foundation,China(No.2162024)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.FRF-GF-20-20B)the National Program on Key Basic Research Project of China(No.2011CB605502).
文摘High Nbβ/γ-TiAl(HNBG)intermetallics and Ni-based superalloy(IN718)were diffusion-bonded using pure Ti foil interlayer under pulse current.The microstructure,element segregation,and mechanical properties of HNBG/Ti/IN718 joint were investigated.The effect of Ti interlayer on microstructure and mechanical properties of the joint was discussed.The typical microstructure of HNBG/Ti/IN718 joint was HNBG//β/B2,τ_(3)-NiAl_(3)Ti_(2)//α_(2)-Ti_(3)Al//α-Ti+δ-NiTi_(2),β-Ti//δ-NiTi_(2)//β2-(Ni,Fe)Ti//Cr/Fe-richη-Ni_(3)Ti,η-Ni_(3)Ti,α-Cr,δ-Ni_(3)Nb//η-Ni_(3)Ti,γ-Ni,δ-Ni_(3)Nb//IN718.The gaps and Kirkendall voids exhibited a gradual disappearance with increasing bonding temperature.The mechanism of Cr,Fe and Nb elements segregation was that NiTi phase hindered the diffusion of them.The nano-indentation results demonstrated that diffusion zones on IN718 alloy side had higher hardness.The maximum shear strength of the joint(326 MPa)was achieved at bonding parameters of 850℃,20 min and 10 MPa.The fracture occurred in Zones IV and V,and the fracture modes were brittle fracture and cleavage fracture.The introduction of Ti interlayer resulted in improved microstructure and enhanced bonding strength of the joint.
基金supported by the National Natural Science Foundation of China(Grant Nos.51971067 and 52001080)Beijing Natural Science Foundation(Grant No.3232005).
文摘The corrosion behavior of Ti–6Al–2Zr–1Mo–1V(TA15)alloy fabricated through selective laser melting(SLM)technology and traditional wrought technology in hydrochloric acid solutions was investigated using electrochemical testing and surface characterizations,including electron backscattered diffraction,scanning electron microscopy,and X-ray photoelectron spectroscopy analyses.The results showed that both types of TA15 alloy underwent spontaneous passivation reactions in HCl solution,and with the increase in HCl concentration,the surface of SLM-TA15 sample exhibited larger and deeper pits.In comparison to SLM-TA15 sample,the pits on the wrought-TA15 sample were shallower and the surface was more uniform.Analysis of the passive current density,breakdown potential,and electrochemical impedance revealed that the corrosion resistance of both alloys decreased as the concentration of HCl increased,and SLM sample exhibited poorer corrosion resistance compared with the wrought sample.Analysis of Mott–Schottky test curves and calculation of passive film thickness indicated that the passive film of wrought-TA15 sample was superior to that of SLM-TA15 sample.
基金supported by the National Natural Science Foundation of China(Grant Nos.12122405,12274169,and 11574109)the Fundamental Research Funds for the Central Universities。
文摘The high-pressure phase diagram of the Nb-Ti binary system at 0 K is explored by systematic crystal structure prediction.The results highlight a novel niobium-rich bcc phase,Nb_(7)Ti,which is the only dynamically stable ordered Nb-Ti compound under ambient pressure.Extensive first-principles calculations have provided insights into the electronic structure,bonding and superconducting properties of Nb_(7)Ti.The superconducting transition temperature(T_(c))for Nb_(7)Ti at ambient pressure is estimated within the framework of BCS theory to be about 17.5 K,which is significantly higher—nearly double—that of the widely utilized NbTi alloy.Furthermore,the results unveil that the high T_(c) is mainly attributed to the unique ordered lattice along with the strong electron-phonon coupling driven by interatomic interactions at mid-frequency and phonon softening induced by low-frequency Fermi surface nesting.Valuable insights are provided for the subsequent synthesis of application-oriented superconductors at low pressure.
基金National Natural Science Foundation of China(52275349)Key Research and Development Program of Shandong Province(2021ZLGX01)。
文摘Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.
基金funded by Department of Science and Technology of Sichuan Province,China(No.2022YFG0102)the China Postdoctoral Science Foundation(No.2023M733314).
文摘The microstructure and mechanical properties of the Ti-5Al-5Mo-5V-1Cr-1Fe(Ti-55511)alloy under different strains were investigated through the design of step-shaped die forging.The results indicate that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur in the high strain region.The orientation of the grains produced by CDRX is random and does not weaken the fiber texture.<100>-oriented grains expand gradually with increasing strain,thereby enhancing the strength of{100}texture.Significant anisotropic mechanical properties are observed in the large strain region and analyzed through in-situ tensile experiments.When the loading direction is parallel to the longitudinal(L)direction,strain concentration is observed near the dynamically recrystallized(DRXed)grains and inside grains oriented along<100>,leading to crack initiation.Furthermore,the small angle between the loading direction and the c-axis hinders the activation of prismatic and basal slip,thereby enhancing the strength.When the loading direction is parallel to the short transverse(ST)direction,cracks are initiated not only within grains oriented along<100>,but also at the grain boundaries.Regarding impact toughness,the elongatedβgrains in the L direction enhance the resistance to crack propagation.
基金Project(2021YFB3700801)supported by the National Key Research and Development Program of ChinaProject(2023JJ30683)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the State Key Laboratory of Powder Metallurgy(Central South University),China。
文摘Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.