Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in auto-matic cavity design bas...Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in auto-matic cavity design based on the my-testing model. A new ray-testing approach is presented to classify the part surfaces to core/cavity surfaces and undercut surfaces by automatic identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. The algorithm is robust and adapted to rather complicated geometry, so it is valuable in computer-aided mold design systems. To validate the efficiency of the approach, an experimental program is implemented. Case studies show that the approach is practical and valuable in automatic parting line and parting surface generation.展开更多
The analyses of different sulfur forms, the trace elements in pyrites using electron microprobe and the trace elements in coal using INAA (instrumental neutron activation analysis) of the Late Paleozoic coals from the...The analyses of different sulfur forms, the trace elements in pyrites using electron microprobe and the trace elements in coal using INAA (instrumental neutron activation analysis) of the Late Paleozoic coals from the Taozao coalfield in Shandong Province, China, conclude that most sulfur (>75 %) in high-sulfur coal of Taiyuan Formation occurred as pyrite, in which many hazardous elements co-existed and their concentrations varied with their geological origin. The concentrations of hazardous elements in high-sulfur coals from Taiyuan Formation, composing mainly of Cu, As, U, Pb, Mo and Co, are much higher than those in the low-sulfur coals from Shanxi Formation and Shihezi Formation, because the influence of seawater during and after coal accumulation in Taiyuan Formation is stronger than those in Shanxi and Shihezi formations. Moreover, the element As is related to Fe, and both elements exist mainly in the form of pyrite. The element U is richer in the coal influenced by seawater. In addition, the coal affected by the magmatism contains more U, too. When high-sulfur coals are processed with heavy media washing to remove sulfur and minerals, the majority of hazardous elements will also be removed from the coals.展开更多
On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the c...On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features, The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved.展开更多
It is critical to identify core/cavity and undercut surfaces of molds in parting line generation. A new Ray-Testing approach is presented to detect these surfaces by identifying the visibility of surfaces. A simple, d...It is critical to identify core/cavity and undercut surfaces of molds in parting line generation. A new Ray-Testing approach is presented to detect these surfaces by identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. Case studies show that the approach is practical and valuable in automated parting line generation.展开更多
In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of squa...In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations.展开更多
A CAD approach which can optimize and automate the parting direction determination is presented. The approach is based on the geometrical and topological information of the solid modelling of the plastic moulded part ...A CAD approach which can optimize and automate the parting direction determination is presented. The approach is based on the geometrical and topological information of the solid modelling of the plastic moulded part in order to select a pair of optimal parting directions of a two plate mould which minimizes the number of side cores. The shell of a part is divided into inter influential regions and non influential faces in the mould design point of view. Through analyzing and computing the accessibility direction cones of the inter influential regions, the optimal parting directions can be determined automatically.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
To ensure the dimensional accuracy of the final blade profile,it is necessary for precision Electrochemical Machining(ECM)of blade profile to come into an equilibrium state.However,after Electrochemical Trepanning(ECT...To ensure the dimensional accuracy of the final blade profile,it is necessary for precision Electrochemical Machining(ECM)of blade profile to come into an equilibrium state.However,after Electrochemical Trepanning(ECTr),the cascade channel of the blisk is narrow,and the blank allowance distribution is uneven,making it difficult for the precision ECM to become balanced.In blisk production,the two-step method cannot make precision ECM enter equilibrium for some blisk types.A three-step processing method is proposed to overcome this problem.The threestep method adds Electrochemical Homogenizing Machining(ECHM)between the ECTr and precision ECM steps so that the blank allowance can be homogenized quickly without unduly affecting the minimum allowance.Comparative machining experiments of the two-and three-step methods were performed to verify the improvement to blade machining accuracy.The processing results show that the contour parameters of the blade after the three-step method implementation are much better.The allowance difference of the concave(convex)side decreased by 70.5%(65%).In addition,the current in the three-step method is stable at 110 A at the end of precision ECM,verifying successfully entering the equilibrium state.展开更多
In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design....In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.This study addresses this issue by presenting a novel combined data fusion algorithm,which serves to enhance the accuracy and reliability of failure rate analysis for a specific aircraft model by integrating historical failure data from similar models as supplementary information.Through a comprehensive analysis of two different maintenance projects,this study illustrates the application process of the algorithm.Building upon the analysis results,this paper introduces the innovative equal integral value method as a replacement for the conventional equal interval method in the context of maintenance schedule optimization.The Monte Carlo simulation example validates that the equivalent essential value method surpasses the traditional method by over 20%in terms of inspection efficiency ratio.This discovery indicates that the equal critical value method not only upholds maintenance efficiency but also substantially decreases workload and maintenance costs.The findings of this study open up novel perspectives for airlines grappling with data scarcity,offer fresh strategies for the optimization of aviation maintenance practices,and chart a new course toward achieving more efficient and cost-effective maintenance schedule optimization through refined data analysis.展开更多
To meet the increased demand for light-weight and high-performance special-shaped load bearing parts in automotive industry,the short carbon fiber reinforced magnesium matrix composite(C_(sf)/Mg)part with complex conf...To meet the increased demand for light-weight and high-performance special-shaped load bearing parts in automotive industry,the short carbon fiber reinforced magnesium matrix composite(C_(sf)/Mg)part with complex configuration features and abrupt cross-sectional transitions was fabricated by liquid-solid extrusion following vacuum pressure infiltration process(LSEVI).Near-net forming schemes of both the special-shaped fiber preform and composite part were proposed.The effect of process parameters on the forming quality of the composite part was discussed.Meanwhile,the microstructures and compressive properties in different regions of the part were analyzed.The results show that the forward forming scheme provides the special-shaped fiber preform with no surface defects.For the C_(sf)/AZ91D part,its internal microstructures show that the infiltration of liquid magnesium is sufficient and uniform.The compressive strength of the composite part can reach up to 487 MPa,corresponding to~40%increase compared to 335 MPa of the AZ91D alloy.The average compressive strain of composites is less than 10%,which is about 50%of that of the AZ91D alloy.When the fiber orientation is parallel to the shear direction on the shear plane,the load-bearing capacity of the fiber is much higher than that of the fiber perpendicular to the shear direction.This work not only provides a convenient approach to fabricate special-shaped preform with high fiber volume fraction,but also gives a demonstration for the near-net forming of C_(sf)/Mg parts with excellent material isotropy and compressive properties.展开更多
The aim of this study was to isolate the chemical constituents of the aerial parts of Polygala tenuifolia Willd. and to determine their antioxidant activities. Ten flavonoids were isolated and purified by silica gel, ...The aim of this study was to isolate the chemical constituents of the aerial parts of Polygala tenuifolia Willd. and to determine their antioxidant activities. Ten flavonoids were isolated and purified by silica gel, Sephadex LH-20, and ODS column chromatography, and semi-preparative HPLC. Their structures were elucidated by spectroscopic analysis and identified as isorhamnetin-3-O-13-D-glucopyranoside (1), isorhamnetin-3-O-13-D-galactopyranoside (2), quercetin-3-O-13-o-glucopyranosyl (1--*2)-I^-D-galactopyranoside (3), quercetin-3-O-13-O-glucopyranosyl (1---~2)-13-D-glucopyranoside (4), linarin (5), quercetin-3-O- 13-D-glucopyranoside (6), 5,7-dihydroxy-8-methxoyflavone-7-O-13-o-glucuronoside (7), isorhamnetin (8), kaempferol (9) and quercetin (10). All these compounds were isolated from this plant for the first time, and compounds 1-5 and 7 were isolated from the genus of Polygala for the first time. The antioxidant activities of the isolated compounds were evaluated by DPPH free radical scavenging assay, and compounds 3, 4, 6, 8, 9 and 10 showed potent antioxidant activities.展开更多
As a key technology of rapid prototyping and manufacturing (RP&M), rapid manufacturing of metal parts is a target of RP&M. Introducing selective laser sintering (SLS), an important branch of RP&M, this pap...As a key technology of rapid prototyping and manufacturing (RP&M), rapid manufacturing of metal parts is a target of RP&M. Introducing selective laser sintering (SLS), an important branch of RP&M, this paper gives a new method oriented on low power SLS system to fabricate metal parts. With this kind of technology, the mixture of metal and polymer powder is sintered first to get green part, then, after debinding and metal infiltration, dense parts are gotten. In the end, influencing factors of this technology are analyzed. At the same time, some applications are given.展开更多
This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different price...This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different prices and quality characteristics. Because of the buyer's quality preference and suppliers' discount rates for bulky purchases, the model assists the procurement manager to determine how best to purchase the components/parts to meet its demand while minimizing the total acquisition costs.展开更多
文摘Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in auto-matic cavity design based on the my-testing model. A new ray-testing approach is presented to classify the part surfaces to core/cavity surfaces and undercut surfaces by automatic identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. The algorithm is robust and adapted to rather complicated geometry, so it is valuable in computer-aided mold design systems. To validate the efficiency of the approach, an experimental program is implemented. Case studies show that the approach is practical and valuable in automatic parting line and parting surface generation.
文摘The analyses of different sulfur forms, the trace elements in pyrites using electron microprobe and the trace elements in coal using INAA (instrumental neutron activation analysis) of the Late Paleozoic coals from the Taozao coalfield in Shandong Province, China, conclude that most sulfur (>75 %) in high-sulfur coal of Taiyuan Formation occurred as pyrite, in which many hazardous elements co-existed and their concentrations varied with their geological origin. The concentrations of hazardous elements in high-sulfur coals from Taiyuan Formation, composing mainly of Cu, As, U, Pb, Mo and Co, are much higher than those in the low-sulfur coals from Shanxi Formation and Shihezi Formation, because the influence of seawater during and after coal accumulation in Taiyuan Formation is stronger than those in Shanxi and Shihezi formations. Moreover, the element As is related to Fe, and both elements exist mainly in the form of pyrite. The element U is richer in the coal influenced by seawater. In addition, the coal affected by the magmatism contains more U, too. When high-sulfur coals are processed with heavy media washing to remove sulfur and minerals, the majority of hazardous elements will also be removed from the coals.
文摘On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features, The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved.
文摘It is critical to identify core/cavity and undercut surfaces of molds in parting line generation. A new Ray-Testing approach is presented to detect these surfaces by identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. Case studies show that the approach is practical and valuable in automated parting line generation.
基金the Ministry of Science and Technology of China for the National Basic Research Program of China(973 Program,Grant No.2011CB309704)
文摘In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations.
文摘A CAD approach which can optimize and automate the parting direction determination is presented. The approach is based on the geometrical and topological information of the solid modelling of the plastic moulded part in order to select a pair of optimal parting directions of a two plate mould which minimizes the number of side cores. The shell of a part is divided into inter influential regions and non influential faces in the mould design point of view. Through analyzing and computing the accessibility direction cones of the inter influential regions, the optimal parting directions can be determined automatically.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
基金supported by the National Natural Science Foundation of China(No.52075253)the Innovation Research Team of the National Natural Science Foundation of China(No.51921003)。
文摘To ensure the dimensional accuracy of the final blade profile,it is necessary for precision Electrochemical Machining(ECM)of blade profile to come into an equilibrium state.However,after Electrochemical Trepanning(ECTr),the cascade channel of the blisk is narrow,and the blank allowance distribution is uneven,making it difficult for the precision ECM to become balanced.In blisk production,the two-step method cannot make precision ECM enter equilibrium for some blisk types.A three-step processing method is proposed to overcome this problem.The threestep method adds Electrochemical Homogenizing Machining(ECHM)between the ECTr and precision ECM steps so that the blank allowance can be homogenized quickly without unduly affecting the minimum allowance.Comparative machining experiments of the two-and three-step methods were performed to verify the improvement to blade machining accuracy.The processing results show that the contour parameters of the blade after the three-step method implementation are much better.The allowance difference of the concave(convex)side decreased by 70.5%(65%).In addition,the current in the three-step method is stable at 110 A at the end of precision ECM,verifying successfully entering the equilibrium state.
文摘In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.This study addresses this issue by presenting a novel combined data fusion algorithm,which serves to enhance the accuracy and reliability of failure rate analysis for a specific aircraft model by integrating historical failure data from similar models as supplementary information.Through a comprehensive analysis of two different maintenance projects,this study illustrates the application process of the algorithm.Building upon the analysis results,this paper introduces the innovative equal integral value method as a replacement for the conventional equal interval method in the context of maintenance schedule optimization.The Monte Carlo simulation example validates that the equivalent essential value method surpasses the traditional method by over 20%in terms of inspection efficiency ratio.This discovery indicates that the equal critical value method not only upholds maintenance efficiency but also substantially decreases workload and maintenance costs.The findings of this study open up novel perspectives for airlines grappling with data scarcity,offer fresh strategies for the optimization of aviation maintenance practices,and chart a new course toward achieving more efficient and cost-effective maintenance schedule optimization through refined data analysis.
基金support from the National Natural Science Foundation of China (No.52231004,52175365,51972271)Dr.Jiawei Fu appreciates the support from The Young Talents Plan in Shaanxi Province of China (No.00121)。
文摘To meet the increased demand for light-weight and high-performance special-shaped load bearing parts in automotive industry,the short carbon fiber reinforced magnesium matrix composite(C_(sf)/Mg)part with complex configuration features and abrupt cross-sectional transitions was fabricated by liquid-solid extrusion following vacuum pressure infiltration process(LSEVI).Near-net forming schemes of both the special-shaped fiber preform and composite part were proposed.The effect of process parameters on the forming quality of the composite part was discussed.Meanwhile,the microstructures and compressive properties in different regions of the part were analyzed.The results show that the forward forming scheme provides the special-shaped fiber preform with no surface defects.For the C_(sf)/AZ91D part,its internal microstructures show that the infiltration of liquid magnesium is sufficient and uniform.The compressive strength of the composite part can reach up to 487 MPa,corresponding to~40%increase compared to 335 MPa of the AZ91D alloy.The average compressive strain of composites is less than 10%,which is about 50%of that of the AZ91D alloy.When the fiber orientation is parallel to the shear direction on the shear plane,the load-bearing capacity of the fiber is much higher than that of the fiber perpendicular to the shear direction.This work not only provides a convenient approach to fabricate special-shaped preform with high fiber volume fraction,but also gives a demonstration for the near-net forming of C_(sf)/Mg parts with excellent material isotropy and compressive properties.
基金New-Century Talent Program, Ministry of Education of China (Grant No.985-2-102-113)National Science Fund for Excellent Young Scholars (Grant No. 81222051)National Key Technology R&D Program "New Drug Innovation" of China (Grant No. 2012ZX09304-005, 2012ZX09301002-002)
文摘The aim of this study was to isolate the chemical constituents of the aerial parts of Polygala tenuifolia Willd. and to determine their antioxidant activities. Ten flavonoids were isolated and purified by silica gel, Sephadex LH-20, and ODS column chromatography, and semi-preparative HPLC. Their structures were elucidated by spectroscopic analysis and identified as isorhamnetin-3-O-13-D-glucopyranoside (1), isorhamnetin-3-O-13-D-galactopyranoside (2), quercetin-3-O-13-o-glucopyranosyl (1--*2)-I^-D-galactopyranoside (3), quercetin-3-O-13-O-glucopyranosyl (1---~2)-13-D-glucopyranoside (4), linarin (5), quercetin-3-O- 13-D-glucopyranoside (6), 5,7-dihydroxy-8-methxoyflavone-7-O-13-o-glucuronoside (7), isorhamnetin (8), kaempferol (9) and quercetin (10). All these compounds were isolated from this plant for the first time, and compounds 1-5 and 7 were isolated from the genus of Polygala for the first time. The antioxidant activities of the isolated compounds were evaluated by DPPH free radical scavenging assay, and compounds 3, 4, 6, 8, 9 and 10 showed potent antioxidant activities.
文摘As a key technology of rapid prototyping and manufacturing (RP&M), rapid manufacturing of metal parts is a target of RP&M. Introducing selective laser sintering (SLS), an important branch of RP&M, this paper gives a new method oriented on low power SLS system to fabricate metal parts. With this kind of technology, the mixture of metal and polymer powder is sintered first to get green part, then, after debinding and metal infiltration, dense parts are gotten. In the end, influencing factors of this technology are analyzed. At the same time, some applications are given.
文摘This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different prices and quality characteristics. Because of the buyer's quality preference and suppliers' discount rates for bulky purchases, the model assists the procurement manager to determine how best to purchase the components/parts to meet its demand while minimizing the total acquisition costs.