The dynamic interaction between the maglev vehicle and the three-span rigid frame bridge is discussed. With the consideration of magnetic force, the interaction model is developed. Numerical simulations are performed ...The dynamic interaction between the maglev vehicle and the three-span rigid frame bridge is discussed. With the consideration of magnetic force, the interaction model is developed. Numerical simulations are performed to study the dynamic characteristics of the bridge during vehicle movement along the bridge. The results show that a reasonable value of the linear stiffness ratio of columns to beams is between 2. 0 and 3.0. The dynamic responses of the bridge are aggravated with the decrease in bending rigidity and the increase in vehicle speed and the span ratio of the bridge. It is suggested that a definite way is to control impact coefficients and acceleration in the dynamic design of the bridge. It is unsuitable to adopt the moving load model and the moving mass model in the design. The proposed results can serve in the design of high-speed maglev three-span rigid frame bridges.展开更多
The dynamic interaction between maglev vehicle and three-span continuous guideway is discussed. With the consideration of control system, the dynamic interaction model has been developed. Numerical simulation has been...The dynamic interaction between maglev vehicle and three-span continuous guideway is discussed. With the consideration of control system, the dynamic interaction model has been developed. Numerical simulation has been performed to study dynamic characteristics of the guideway. The results show that bending rigidity, vehicle speed, span ratio and primary frequency all have important influences on the dynamic characteristics of the guideway and there is no distinct trend towards resonance vibration when fl/(v/l) equals 1.0. The definite way is to control impact coefficient and acceleration of the guideway. The conclusions can serve the design of high-speed maglev three-span continuous guideway.展开更多
在“三跨”输电线路张力放线施工中,一旦发生事故被牵导线可能跌落冲击下方跨越网,威胁被跨越物的安全稳定运行,因此提出一种基于激光点云与建筑信息模型(building information modeling,BIM)技术的“三跨”施工跨越网动力学响应分析方...在“三跨”输电线路张力放线施工中,一旦发生事故被牵导线可能跌落冲击下方跨越网,威胁被跨越物的安全稳定运行,因此提出一种基于激光点云与建筑信息模型(building information modeling,BIM)技术的“三跨”施工跨越网动力学响应分析方法。首先利用机载激光雷达采集“三跨”施工现场的三维点云数据,使用改进的布料模拟滤波算法分割得到跨越地形点云数据,使用基于点云空间维度特征与K-Means算法实现对跨越档两侧杆塔点云数据的高精度提取;其次根据提取的点云数据结合BIM技术对目标设备及施工环境进行逆向建模,通过不同地表物体的组装堆砌,并在其上搭建施工跨越网模型;最后通过模拟事故发生时导线对跨越网的冲击碰撞,探测跨越网的承载性能及其与被跨越物之间的动态净空距离。结果表明,该方法能够提前在实际施工环境中对跨越网的动力学性能进行分析,为输电线路跨越施工提供可靠的安全保障及数据支撑,具有一定的工程价值。展开更多
基金The National High Technology Research and Development Program of China (863Program)(No2005AA505440)
文摘The dynamic interaction between the maglev vehicle and the three-span rigid frame bridge is discussed. With the consideration of magnetic force, the interaction model is developed. Numerical simulations are performed to study the dynamic characteristics of the bridge during vehicle movement along the bridge. The results show that a reasonable value of the linear stiffness ratio of columns to beams is between 2. 0 and 3.0. The dynamic responses of the bridge are aggravated with the decrease in bending rigidity and the increase in vehicle speed and the span ratio of the bridge. It is suggested that a definite way is to control impact coefficients and acceleration in the dynamic design of the bridge. It is unsuitable to adopt the moving load model and the moving mass model in the design. The proposed results can serve in the design of high-speed maglev three-span rigid frame bridges.
基金Project (No. 2005AA505440) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The dynamic interaction between maglev vehicle and three-span continuous guideway is discussed. With the consideration of control system, the dynamic interaction model has been developed. Numerical simulation has been performed to study dynamic characteristics of the guideway. The results show that bending rigidity, vehicle speed, span ratio and primary frequency all have important influences on the dynamic characteristics of the guideway and there is no distinct trend towards resonance vibration when fl/(v/l) equals 1.0. The definite way is to control impact coefficient and acceleration of the guideway. The conclusions can serve the design of high-speed maglev three-span continuous guideway.
文摘在“三跨”输电线路张力放线施工中,一旦发生事故被牵导线可能跌落冲击下方跨越网,威胁被跨越物的安全稳定运行,因此提出一种基于激光点云与建筑信息模型(building information modeling,BIM)技术的“三跨”施工跨越网动力学响应分析方法。首先利用机载激光雷达采集“三跨”施工现场的三维点云数据,使用改进的布料模拟滤波算法分割得到跨越地形点云数据,使用基于点云空间维度特征与K-Means算法实现对跨越档两侧杆塔点云数据的高精度提取;其次根据提取的点云数据结合BIM技术对目标设备及施工环境进行逆向建模,通过不同地表物体的组装堆砌,并在其上搭建施工跨越网模型;最后通过模拟事故发生时导线对跨越网的冲击碰撞,探测跨越网的承载性能及其与被跨越物之间的动态净空距离。结果表明,该方法能够提前在实际施工环境中对跨越网的动力学性能进行分析,为输电线路跨越施工提供可靠的安全保障及数据支撑,具有一定的工程价值。