Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we pr...Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.展开更多
In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others...In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.展开更多
This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differen...This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differential/algebraic equations(DAEs) always cause great computational burden and system non-linearity usually makes GTTO non-convex bearing multiple optima. Therefore, coupled with the three-stage decomposition model, a three-section algorithm of dynamic programming(TSDP) is proposed based on the general iteration mechanism of iterative programming(IDP) and incorporated with adaptivegrid allocation scheme and heuristic modifications. The algorithm iteratively performs dynamic programming with heuristic modifications under constant calculation loads and adaptively allocates the valued computational resources to the regions that can further improve the optimality under the guidance of local error estimates. TSDP is finally compared with IDP and interior point method(IP) to verify its efficiency of computation.展开更多
In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on t...In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study propose...The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks.展开更多
This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a n...This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%.展开更多
Investors are always willing to receive more data.This has become especially true for the application of modern portfolio theory to the institutional asset allocation process,which requires quantitative estimates of r...Investors are always willing to receive more data.This has become especially true for the application of modern portfolio theory to the institutional asset allocation process,which requires quantitative estimates of risk and return.When long-term data series are unavailable for analysis,it has become common practice to use recent data only.The danger is that these data may not be representative of future performance.Although longer data series are of poorer quality,are difficult to obtain,and may reflect various political and economic regimes,they often paint a very different picture of emerging market performance.This paper presents an application of a stochastic non-linear optimization model of portfolios including transaction costs in the Brazilian financial market.In order to have that,portfolio theory and optimal control were used as theoretical basis.The first strategy tries to allocate the whole available wealth,not considering the risk associated to portfolio(deterministic result).In this case the investor obtained profits of 7.23%a month,taking into account the three risk aversion levels during the whole planning period.On the contrary,the results from the stochastic algorithm obtain profits of 1.34%a month and 18.06%a year,if the investor has low risk aversion.The profits would be 0.88%a month and 11.02%a year for a medium risk aversion investor.And with high risk aversion,the investor obtains 0.62%a month and 7.68%a year.展开更多
From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are ...From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.展开更多
The residential energy scheduling of solar energy is an important research area of smart grid. On the demand side, factors such as household loads, storage batteries, the outside public utility grid and renewable ener...The residential energy scheduling of solar energy is an important research area of smart grid. On the demand side, factors such as household loads, storage batteries, the outside public utility grid and renewable energy resources, are combined together as a nonlinear, time-varying, indefinite and complex system, which is difficult to manage or optimize. Many nations have already applied the residential real-time pricing to balance the burden on their grid. In order to enhance electricity efficiency of the residential micro grid, this paper presents an action dependent heuristic dynamic programming(ADHDP) method to solve the residential energy scheduling problem. The highlights of this paper are listed below. First,the weather-type classification is adopted to establish three types of programming models based on the features of the solar energy. In addition, the priorities of different energy resources are set to reduce the loss of electrical energy transmissions.Second, three ADHDP-based neural networks, which can update themselves during applications, are designed to manage the flows of electricity. Third, simulation results show that the proposed scheduling method has effectively reduced the total electricity cost and improved load balancing process. The comparison with the particle swarm optimization algorithm further proves that the present method has a promising effect on energy management to save cost.展开更多
This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain e...This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.展开更多
Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicabi...Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.展开更多
Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves r...Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves repeatedly delivering high-energy impact blows onto the ground surface,which improves soil density and thus soil strength and stiffness.However,there exists a lack of methods to predict the effectiveness of RDC in different ground conditions,which has become a major obstacle to its adoption.For this,in this context,a prediction model is developed based on linear genetic programming (LGP),which is one of the common approaches in application of artificial intelligence for nonlinear forecasting.The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided,8-t impact roller (BH-1300).It is shown that the model is accurate and reliable over a range of soil types.Furthermore,a series of parametric studies confirms its robustness in generalizing data.In addition,the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors.展开更多
The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery...The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery is established. And then an implementable strategy of brake energy recovery is proposed by the constraint variable trajectories analysis of the dynamic programming algorithm in the typical urban bus cycle. The simulation results indicate the brake energy recovery efficiency of the accumulator can reach 60% in the dynamic programming algorithm. And the hydraulic hybrid system can output braking torque as much as possible.Moreover, the accumulator has almost equal efficiency of brake energy recovery between the implementable strategy and the dynamic programming algorithm. Therefore, the implementable strategy is very effective in improving the efficiency of brake energy recovery.The road tests show the fuel economy of the hydraulic hybrid bus improves by 22.6% compared with the conventional bus.展开更多
A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking prob...A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation.展开更多
This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method...This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method, controllers for solving the singular systems optimal control problem are designed. The proposed algorithm can work well when the system model is not exactly known but the input and output data can be measured. The policy iteration of each controller only uses their own states and input information for learning,and do not need to know the whole system dynamics. Simulation results on the New England 10-machine 39-bus test system show the effectiveness of the designed controller.展开更多
The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcom...The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.展开更多
In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is propos...In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is proposed by designing a synchronization-error-driven triggering condition,which brings together the consensus control with Adaptive Dynamic Programming(ADP)technique.Then,the developed event-triggered distributed control law can be employed by finding an approximate solution of event-triggered coupled Hamilton-Jacobi-Bellman(HJB)equation.To address this issue,the critic network architecture is constructed,in which an adaptive weight updating law is designed for estimating the cooperative optimal cost function online.Therefore,the event-triggered closed-loop system is decomposed into two subsystems:the system with flow dynamics and the system with jump dynamics.By using Lyapunov method,the stability of this closed-loop system is guaranteed and all signals are ensured to be Uniformly Ultimately Bounded(UUB).Furthermore,the Zeno behavior is avoided.Simulation results are finally provided to demonstrate the effectiveness of the proposed method.展开更多
基金supported in part by the National Key Research and Development Program of China(2024YFB4709100,2021YFE0206100)the National Natural Science Foundation of China(62073321)+1 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029)the Science and Technology Development Fund,Macao SAR,China(0015/2020/AMJ)
文摘Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.
基金supported by the Aeronautical Science Foundation of China(20220001057001)an Open Project of the National Key Laboratory of Air-based Information Perception and Fusion(202437)
文摘In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.
基金Supported by the National Basic Research Program of China(2012CB720500)the National High Technology Research and Development Program of China(2013AA040702)
文摘This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differential/algebraic equations(DAEs) always cause great computational burden and system non-linearity usually makes GTTO non-convex bearing multiple optima. Therefore, coupled with the three-stage decomposition model, a three-section algorithm of dynamic programming(TSDP) is proposed based on the general iteration mechanism of iterative programming(IDP) and incorporated with adaptivegrid allocation scheme and heuristic modifications. The algorithm iteratively performs dynamic programming with heuristic modifications under constant calculation loads and adaptively allocates the valued computational resources to the regions that can further improve the optimality under the guidance of local error estimates. TSDP is finally compared with IDP and interior point method(IP) to verify its efficiency of computation.
基金supported in part by the Science Center Program of National Natural Science Foundation of China(62373189,62188101,62020106003)the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures,China。
文摘In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
基金Shaanxi Science Fund for Distinguished Young Scholars,Grant/Award Number:2024JC-JCQN-57Xi’an Science and Technology Plan Project,Grant/Award Number:2023JH-QCYJQ-0086+2 种基金Scientific Research Program Funded by Education Department of Shaanxi Provincial Government,Grant/Award Number:P23JP071Engineering Technology Research Center of Shaanxi Province for Intelligent Testing and Reliability Evaluation of Electronic Equipments,Grant/Award Number:2023-ZC-GCZX-00472022 Shaanxi University Youth Innovation Team Project。
文摘The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks.
基金supported in part by the European Regional Development Fund under Grant KK.01.1.1.01.0009(DATACROSS).
文摘This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%.
文摘Investors are always willing to receive more data.This has become especially true for the application of modern portfolio theory to the institutional asset allocation process,which requires quantitative estimates of risk and return.When long-term data series are unavailable for analysis,it has become common practice to use recent data only.The danger is that these data may not be representative of future performance.Although longer data series are of poorer quality,are difficult to obtain,and may reflect various political and economic regimes,they often paint a very different picture of emerging market performance.This paper presents an application of a stochastic non-linear optimization model of portfolios including transaction costs in the Brazilian financial market.In order to have that,portfolio theory and optimal control were used as theoretical basis.The first strategy tries to allocate the whole available wealth,not considering the risk associated to portfolio(deterministic result).In this case the investor obtained profits of 7.23%a month,taking into account the three risk aversion levels during the whole planning period.On the contrary,the results from the stochastic algorithm obtain profits of 1.34%a month and 18.06%a year,if the investor has low risk aversion.The profits would be 0.88%a month and 11.02%a year for a medium risk aversion investor.And with high risk aversion,the investor obtains 0.62%a month and 7.68%a year.
基金The National Science Fund for Distinguished Young Scholars (No.60425206)the National Natural Science Foundation of China (No.60633010)the Natural Science Foundation of Jiangsu Province(No.BK2006094)
文摘From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.
基金supported in part by the National Natural Science Foundation of China(61533017,U1501251,61374105,61722312)
文摘The residential energy scheduling of solar energy is an important research area of smart grid. On the demand side, factors such as household loads, storage batteries, the outside public utility grid and renewable energy resources, are combined together as a nonlinear, time-varying, indefinite and complex system, which is difficult to manage or optimize. Many nations have already applied the residential real-time pricing to balance the burden on their grid. In order to enhance electricity efficiency of the residential micro grid, this paper presents an action dependent heuristic dynamic programming(ADHDP) method to solve the residential energy scheduling problem. The highlights of this paper are listed below. First,the weather-type classification is adopted to establish three types of programming models based on the features of the solar energy. In addition, the priorities of different energy resources are set to reduce the loss of electrical energy transmissions.Second, three ADHDP-based neural networks, which can update themselves during applications, are designed to manage the flows of electricity. Third, simulation results show that the proposed scheduling method has effectively reduced the total electricity cost and improved load balancing process. The comparison with the particle swarm optimization algorithm further proves that the present method has a promising effect on energy management to save cost.
基金supported by the National Natural Science Foundation of China(6157328561305133)
文摘This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.
基金supported by the National Natural Science Foundation of China(91648204 61601486)+1 种基金State Key Laboratory of High Performance Computing Project Fund(1502-02)Research Programs of National University of Defense Technology(ZDYYJCYJ140601)
文摘Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.
基金supported under Australian Research Council’s Discovery Projects funding scheme(project No. DP120101761)
文摘Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves repeatedly delivering high-energy impact blows onto the ground surface,which improves soil density and thus soil strength and stiffness.However,there exists a lack of methods to predict the effectiveness of RDC in different ground conditions,which has become a major obstacle to its adoption.For this,in this context,a prediction model is developed based on linear genetic programming (LGP),which is one of the common approaches in application of artificial intelligence for nonlinear forecasting.The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided,8-t impact roller (BH-1300).It is shown that the model is accurate and reliable over a range of soil types.Furthermore,a series of parametric studies confirms its robustness in generalizing data.In addition,the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors.
基金supported by Shanghai Science and Technology Committee(No.0904H155100)
文摘The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery is established. And then an implementable strategy of brake energy recovery is proposed by the constraint variable trajectories analysis of the dynamic programming algorithm in the typical urban bus cycle. The simulation results indicate the brake energy recovery efficiency of the accumulator can reach 60% in the dynamic programming algorithm. And the hydraulic hybrid system can output braking torque as much as possible.Moreover, the accumulator has almost equal efficiency of brake energy recovery between the implementable strategy and the dynamic programming algorithm. Therefore, the implementable strategy is very effective in improving the efficiency of brake energy recovery.The road tests show the fuel economy of the hydraulic hybrid bus improves by 22.6% compared with the conventional bus.
基金supported by the National Natural Science Foundation of China(Grant Nos.61034002,61233001,61273140,61304086,and 61374105)the Beijing Natural Science Foundation,China(Grant No.4132078)
文摘A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation.
基金supported in part by the National Natural Science Foundation of China(61473070,61433004,61627809)SAPI Fundamental Research Funds(2018ZCX22)
文摘This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method, controllers for solving the singular systems optimal control problem are designed. The proposed algorithm can work well when the system model is not exactly known but the input and output data can be measured. The policy iteration of each controller only uses their own states and input information for learning,and do not need to know the whole system dynamics. Simulation results on the New England 10-machine 39-bus test system show the effectiveness of the designed controller.
文摘The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.
基金co-supported by the National Natural Science Foundation of China(No.62003036)China Postdoctoral Science Foundation(No.2019TQ0037)。
文摘In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is proposed by designing a synchronization-error-driven triggering condition,which brings together the consensus control with Adaptive Dynamic Programming(ADP)technique.Then,the developed event-triggered distributed control law can be employed by finding an approximate solution of event-triggered coupled Hamilton-Jacobi-Bellman(HJB)equation.To address this issue,the critic network architecture is constructed,in which an adaptive weight updating law is designed for estimating the cooperative optimal cost function online.Therefore,the event-triggered closed-loop system is decomposed into two subsystems:the system with flow dynamics and the system with jump dynamics.By using Lyapunov method,the stability of this closed-loop system is guaranteed and all signals are ensured to be Uniformly Ultimately Bounded(UUB).Furthermore,the Zeno behavior is avoided.Simulation results are finally provided to demonstrate the effectiveness of the proposed method.